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Abstract: The theoretical interpretation of lattice resolution in high-angle annular dark-field images produced

in a scanning transmission electron microscope (STEM) has been a subject of controversy. A first-order

perturbation theoretical analysis is presented here, which shows that the contrast in the image arises from

large-angle multiphonon, incoherent scattering, which is atomic number dependent. The lattice resolution is a

consequence of coherently filling the objective aperture, and dynamical elastic diffraction preceding the large-

angle multiphonon scattering is not a necessary requirement. Elastic scattering to the higher order Laue zone

(HOLZ) is also shown to be negligible, compared with the incoherent scattering. Calculations from application

of the theory are also presented. They show that lattice images formed using the high-angle annular dark-field

detector are sensitive to atomic number and are relatively insensitive to defocus. Although high-angle annular

dark-field lattice imaging appears to be simple, scattering into the high-angle detector can only be approxi-

mately described by an incoherent imaging model.

Key words: high-angle annular dark-field, scanning transmission electron microscopy, lattice imaging

INTRODUCTION

In the scanning transmission electron microscope (STEM) a
highly coherent source of energetic electrons is demagnified
by means of lenses to form a nanoprobe that is rastered
across the specimen. The probe electrons can be both elas-
tically and inelastically scattered in their interaction with
the specimen. The inelastically scattered electron distribu-
tion has a narrower angular distribution, and by judicious
choice of collection apertures, an approximate separation
can be made between the large-angle elastic scattering and
the smaller-angle inelastic scattering. Furthermore, the in-
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elastically scattered electrons can be energy analyzed by
passing them through an energy loss spectrometer. Signals
from all these detectors can be displayed on a monitor in
synchronism with the raster of the probe, either individually
or combined in an appropriate manner, to form scanned
images.

Since the pioneering work of Crewe (Crewe, et al.,
1968; Crewe and Wall, 1970) on the imaging of single heavy
atoms by using the ratio of the annular detector signal and
the small-angle bright-field signal, there has been consider-
able interest in the Z-contrast and related techniques as
analytical tools for compositional and structural determi-
nation. Crewe argued that the annular dark-field signal
would be proportional to the elastic scattering and the
bright field would be proportional to the inelastic scatter-
ing. The ratio of elastic to inelastic scattering is approxi-



mately proportional to the atomic number, Z, according to
the simple theory of Lenz. The annular aperture of Crewe et
al. subtended a relatively small angle of 20 mrads and the
signal in crystalline specimens was sensitive to diffraction
effects. Howie (1979) suggested that an annular aperture
with a large inner cutoff, such as 50 mrad at 100 kV, would
only pick up high-angle Rutherford scattering that goes as
7%, since the Bragg spots are attenuated by the Debye-
Waller factor. His ideas have been very successfully applied
in studies of heavy-metal catalyst particles on light-element
support films. Treacy and Rice (1989) used the signal col-
lected at high angle to estimate the number of atoms in a
supported catalyst cluster. By making assumptions about
particle shape, they used the digitized image to attempt a
calibration of intensity increment per atom. They calculated
that Pt clusters containing as few as three atoms on a 200-A
thick y-alumina substrate would be detectable by using a
probe of 3.5 A. This has also lead to studies on appropriate
scattering cross-sections for high-angle annular dark-field
detectors (Pennycook et al., 1986).

Following the multislice calculations of Kirkland et al.,
who investigated the suitability of high-angle dark field to
study the sites of surface adatoms, it was realized that lattice
resolution of crystals was possible by using the high-angle
annular dark-field (HAADF) signal (Kirkland et al., 1987;
Loane et al., 1988). The first results were published by Pen-
nycook and Boatner (1988) who applied the method to the
high T. superconductor YBa,Cu;0,_s. Subsequently, Pen-
nycook and Jesson used the technique to study Si and InP
(Pennycook and Jesson, 1990) and Si/Ge multilayers (Pen-
nycook and Jesson, 1991). These results were followed by
HAADEF lattice images from Si (110), Si (100), and InP
(100) by Silcox and colleagues (Loane et al., 1991, 1992;
Silcox et al., 1992; Hillyard and Silcox, 1993; Hillyard et al.,
1993).

The theoretical interpretation of these images has been
controversial. Pennycook and co-workers argued that, pro-
vided a probe smaller than interplanar spacing can be
formed, the lattice will be resolved and the imaging can be
understood on the basis of incoherent scattering. The theo-
retical description is then a simple sum of individual inten-
sities from an assembly of incoherent scatterers. This idea
was later modified (Pennycook and Jesson, 1990) to incor-
porate localization on atomic columns by the s-state Bloch
waves that were selected by the convergent probe. From a
practical perspective it then became possible to calculate the
intensities in the image by convoluting a probe with a func-
tion representing the scattering of each column (Silcox et
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al., 1992; Hillyard et al., 1993). It was also shown that even
for coherent elastic scattering, the scattering from each col-
umn was independent of scattering from other columns
(Treacy and Gibson, 1993; Jesson and Pennycook, 1995).
The independent scattering model was modified by consid-
ering scattering from multiphonon thermal diffuse pro-
cesses instead of simple Rutherford scattering (Jesson and
Pennycook, 1993, 1995). Under these circumstances there is
no coherence in scattering between atomic columns, and
the coherence in the beam direction only extends across a
small number of atoms in the column (Jesson and Penny-
cook, 1995). Ideally, the contrast for each atomic column
would be proportional to Z, independent of thickness. Cal-
culations showing an atomic number—dependent saturation
of column intensity with thickness suggest that this simple
view should be modified by different absorption factors for
the channeled states (Hillyard et al., 1993).

The other approach has involved the use of multislice
calculations with periodic continuation to simulate the
propagation of a probe through the solid. The amplitude
scattered into a high-angle detector is summed for each slice
of the calculation. Implicit in this approach is a belief that
the probe is coherent and propagates through the crystal by
coherent scattering processes. This view is consistent with
the theory of Spence and Cowley (1978), who argued that
lattice resolution in STEM comes about from coherently
filling an.objective aperture that subtends an angle greater
than the relevant Bragg angle. Scattering into the high-angle
detector either comes from single-phonon scattering (Wang
and Cowley, 1989a,b) or as a result of averaging over many
configurations of atomic displacements (Kirkland et al.,
1987; Loane et al., 1991). The latter approach is equivalent
to multiphonon scattering with an Einstein (constant fre-
quency) dispersion relation for the phonons. It has also
been suggested (Spence et al., 1989) that the image process
is totally coherent and that the HAADF image arose solely
from elastic scattering to the first-order Laue zone.

In the present work, we analyze scattering into the
high-angle annular dark field detector by perturbation
theory. The various mechanisms for large-angle scattering
are examined and we show that in the high-angle limit
multiphonon scattering, using an Einstein model for pho-
non dispersion is equivalent to Rutherford scattering. We
show that single-phonon scattering is incorrect in both the
small- and large-angle limits and that thermal diffuse scat-
tering is more significant than elastic scattering to the first-
order Laue zone. We also show that inelastic scattering
could make a substantial contribution for light elements.
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We then develop a general expression for HAADF im-
aging which incorporates the effects of the probe-forming
lens, multiphonon large-angle scattering, and dynamical
diffraction both before and after the large-angle scattering
event. The effects of dynamical scattering after scattering
into the HAADF detector can be neglected. Our theory
shows that although the contrast can be understood on the
basis of incoherent scattering, the lattice resolution is a
coherent effect that arises from the interference among dif-
ferent wave-vector components of the probe that are sepa-
rated by Bragg vectors, in accordance with the theory of
Spence and Cowley (1978).

Finally, we present calculations showing the sensitivity
to atomic number and the insensitivity to defocus or speci-
men thickness of HAADF lattice images. The resolution, as
expected, depends on the size of the aperture and acceler-
ating voltage. We also show that the effect can only ap-
proximately be described by the incoherent imaging theory,
which implies a simple, local absorption-like potential.

HIGH-ANGLE SCATTERING

Contribution to HAADF Signal from Single
Atom Scattering

The simplest description of high-angle scattering is Ruth-
erford scattering, which assumes that the electrons interact
independently with the coulomb potential from the atomic
nuclei. The amplitude scattered by the wave vector, s or
electron scattering factor, is

272
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where Z is the atomic number and a, the Bohr radius. The
cross section is simply the square of the electron scattering
factor. A problem with the Rurtherford cross section is that
both the differential scattering cross section and the inte-
grated scattering cross section become infinite as the scat-
tering wave vector (or in the case of the integrated cross
section the minimum scattering wave vector) tend to zero.
This singularity can be removed by using a screened cou-
lomb potential

z
V(r) =
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where g, is the permittivity of free space. The electron scat-
tering factor becomes

2Z
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and the cross section is well behaved as s tends to zero. The
screening parameter, |, is an attempt to incorporate the
extra scattering due to the atomic electrons. This can be
done exactly if the Mott formula for the electron scattering
factor is used

2 [Z—fx(s)]
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where fy(s), the X-ray scattering factor, is the Fourier trans-
form of the electron charge density and describes the cou-
lomb scattering by the atomic electrons. The X-ray scatter-
ing factor fy(s) tends to Z as s tends to zero, which means
that the electron scattering factor is well behaved in this
limit and Z — £,(s) becomes f’y(s)s’. As s becomes large, fy(s)
tends to zero and the electron scattering factor becomes
identical to that for Rutherford scattering. A common pa-
rameterization for fy(s) is a sum of 4 Gaussians (Doyle and
Turner, 1968)

Z ajexp(—bjsz). (5)
j

Care must be taken that Z in Equation 5 is made to equal to
Y. aj, otherwise the electron scattering factor will describe
scattering from ionized atoms.

Phonon Contribution to HAADF in Solids

So far we have considered scattering by isolated atoms. In a
solid, elastic scattering is confined to the Bragg spots. Scat-
tering between the Bragg spots only comes about from in-
elastic excitations. Plasmons and the majority of single-
electron excitations only result in relatively small scattering
angles of E/mv?, where E is the energy loss and v is the
electron velocity. Even at 100 kV this angle will not exceed
1 mrad for a 100 eV loss. Most of the scattering between
Bragg spots comes from events involving the creation or
destruction of acoustic phonons. Although the energy losses
are small, usually less than 20 meV, the scattering angles can
be quite large and are typically about 1 or 2 Bragg vectors
(Rez et al., 1977). The theory for single-phonon scattering is



based on the expression for the structure factor in which the
atom positions are shifted by displacements u(r) and can be
found in standard solid-state physics textbooks (Kittel,
1986). In a simplified case, with one atom per unit cell, the
phonon scattered amplitude ¢(s) for scattering wave vector
s is

b(s) = f(s)(exp[is.(r + u(r))] — exp[is.r]) (6)

For convenience, the scattering wave vector s is separated
into a part inside the first Brillouin zone, q, and a reciprocal
lattice vector g

s=q+g %)

It is assumed that the displacements u(r) are small and that
the product s.u(r) <€ 1. This part of the exponential can
then be expanded to first order to give the phonon scatter-
ing amplitude

&(s) = iu - sf, (s)exp(is.r) (8)

and hence the phonon scattering intensity is
dI(s) = (u - s)*f,(s)ds (9)

Assuming an isotropic phonon dispersion (relation between
frequency and wave vector), averaging over angle, neglect-
ing differences between transverse and longitudinal polar-
ization and summing over processes involving both the
creation and destruction of a phonon of wave vector q gives
2, the average displacement squared in terms of the occu-
pation number N, for phonons of wave vector q

L N, 10
= Moalg Nt (10

=

The occupation number for a phonon of frequency w, wave
vector g, is given by the usual Bose-Einstein factor

1
N, = (11)

g fo(g)
exp kT -1

where 7 is Plank’s constant divided by 2, kg is Boltzmann’s

constant, and T is the temperature. Substituting equation 10
in equation 9 gives
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Figure 1. Intensity of phonon scattering for gold as a function of
scattering wave vector showing the effects of the dispersion model.
The scattering wave vector is in units of the 200 reciprocal lattice

vector.

dl(s) = S ,2(5) (Nq + %) ds (12)

M, 0(q)

for the phonon scattered intensity.
For low-energy acoustic phonons at room temperature,
fiw(q) < kgT and the Bose Einstein factor becomes

kgT
e~ (g 13
and the intensity is now
fikgT
dI(s) =———— $*f,*(s)ds (14)

M, w"(q)

This formula can be used to understand the distribution of
single phonon scattering in diffraction patterns. The pho-
non frequency w(q), like an energy band, is periodic from
one Brillouin zone to the next. The overall intensity distri-
bution is given by s*f,*(s) which peaks approximately be-
tween the first and second reciprocal lattice point in a close
packed direction for common metals and semiconductors
(see Fig. 1). A simple treatment of the frequency of the
phonon as a function of wave vector (the phonon disper-
sion relation), assuming the atoms can be treated as a linear
chain in the wave-vector direction, gives
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20\ (1
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where C is the elastic constant and a is the repeat distance
in the direction under consideration.

It can easily be seen that when ¢ is small, the phonon
dispersion is linear and can be approximated as w(q) = vq
where v, is the speed of sound. This is called the Debye
model for the dispersion relation and is of significance in the
theory of the low temperature-specific heat. Examining
equation 14 by using either equation 15, or the Debye dis-
persion, shows that the phonon scattered intensity will be
peaked around the Bragg spots. Furthermore, the intensity
for s = 0 will tend to a constant value. A more sophisticated
treatment of phonon dispersion (Begbie, 1947, Begbie and
Born, 1947) where interactions of a three-dimensional lat-
tice are considered leads to phonon dispersion relations in
which low values of the frequency are found along simple
crystallographic directions. According to equation 14, low
frequencies mean higher intensities which appear as the
thermal streaks often observed in diffraction patterns. It is
not surprising that they are more easily observed around
low-order reciprocal lattice points where the envelope term
in equation 14 is peaked, though elastic dynamical diffrac-
tion will redistribute the intensity around all the reciprocal
lattice points in the zero-order Laue Zone.

Another popular dispersion relation is the Einstein
model in which it is assumed that the frequency is fixed at
the Einstein frequency w(g) = wg and does not vary with the
wave vector. This is actually quite a reasonable approxima-
tion for higher-frequency optic modes that are present
when there is more than one atom per unit cell but, as can
be seen from equation 15, it is totally inappropriate for the
low-frequency acoustic modes that give rise to most of the
scattering. Another way of looking at the Einstein model is
to assume that atoms are independently vibrating at the
Einstein frequency.

The phonon scattered intensity is now

_ 2
Z {,CES)) 0

0

dI(s) = 4u°s* (16)

which behaves as

22

di(s) = ds (17)
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as s gets large and approaches zero as s tends to zero. Clearly
this does not go to the same limits as Rutherford scattering
either for small or large angles. A two-dimensional Fourier
transform of the single-phonon scattering distribution
(equation 16) will result in a doughnut-shaped function in
real space, as seen in the calculations of Wang and Cowley
(1989a,b). This effect has not been observed in the experi-
mental images, which supports the idea that single-phonon
scattering alone is not responsible for scattering to the
HAADF detector.

For scattering angles greater than 50 mrad, s.u is
greater than 0.5 and the simple first-order expansion of
equation 6 is no longer valid (Konnert and D’Antonio,
1991). Higher-order terms in the expansion of the expo-
nential in equation 6 have to be considered. Physically,
these correspond to the creation or destruction of more
than one phonon in the scattering event. The total scatter-
ing is derived from summing all such terms. This requires
extensive computation if a realistic or even a Debye phonon
dispersion is used, but it can be performed analytically if an
Einstein dispersion relation is assumed (Earney, 1971). An
approximate result for a general dispersion relation can be
calculated by using the correlation function of Glauber
(1955). This more sophisticated approach has been applied
to HAADF imaging by Jesson (Jesson and Pennycook,
1995). Another way to derive the same result for the Ein-
stein model is to follow the arguments of Hall and Hirsch
(1965) which are given in Appendix A. The final expression
for the multiphonon or thermal diffuse scattering cross sec-
tion is equation A9

(Z-£ds)*
i

dl(s) = 4 [1 - exp(—Ms°)]ds (18)

where M is the Debye-Waller factor, which can also be
written in terms of the mean square atomic displacement if
independently vibrating atoms are assumed. The Debye-
Waller factor is given by

N 1 1
=37 =M, \epoy T -1 2) 19

where 6 is the Einstein temperature, which is related to the
Einstein frequency by

Op=—— (20)



Equation 18 tends to equation 1, the Rutherford scattering
formula, as s becomes large, and approaches a constant
value as s goes to zero. This behavior is to be expected as
there should be no difference between atoms in a solid
vibrating in an uncorrelated manner and free atoms in a
dilute gas.

Although most inelastic scattering is confined to small
angles, it is of interest to evaluate possible inelastic contri-
butions to the HAADF detector. Scattering for valence and
inner shell electrons involving large energy losses is concen-
trated as a momentum transfer equivalent to that for a free
electron whose energy is identical to the energy loss of the
fast electron. The resulting peak in the angular distribution
of scattered intensity is known as the Bethe ridge (Egerton,
1986). A simple theory for the intensity is given in Appen-
dix B. The approximate ratio of the elastically scattered
intensity to the high-angle, inelastically scattered intensity is
Z, the atomic number. For light elements such as carbon,
this inelastic contribution could be significant and should
be considered in quantitative imaging with the HAADF
detector.

Elastic Scattering to Upper Layer Ring

Spence et al. (1989) have suggested that a substantial part of
the signal collected by the HAADF detector comes from the
first-order Laue zone ring. If this were true, the theory for
the intensity collected would be quite different and there
would be no doubt that the scattering and contrast arise
from coherent diffraction effects. Pennycook showed ex-
perimentally that the contribution of the first-order Laue
zone was about 1% of the thermal diffuse scattering inten-
sity collected by the detector (Pennycook and Jesson, 1991).
It is very easy to calculate the theoretical ratio of thermal
diffuse to first-order Laue zone scattering, as both can be
treated by first-order perturbation theory. The scattering
for thermal diffuse scattering has been derived above and
the integrated cross section for scattering to a detector with
inner angle corresponding to wave vector s, and outer
angle corresponding to wave vector s_ .. is

[tz £5)?

=Jon T 2 [1-exp(-Ms")2mwsds  (21)
i 2

S,

where K is the fast electron wave vector. As the scattering is
incoherent, the total scattering for an element with N at-
oms-unit volume of thickness ¢ is Not.

The first order Laue zone (FOLZ) scattering is given by

Lattice Resolution in HAADF Images 33

Figure 2. Geometry for scattering to the first order Laue zone
(FOLZ).

the kinematic scattering expression, including the effects of
the Debye Waller factor, which are significant for these high
scattering angles. For example, in Si (110) at 100 kV, the
FOLZ ring corresponds to an angle of 137 mrad. The cross

section is

s 2
feﬁ(s)wexp(—w) (22)

s,

where the excitation error for upper layer line, s, is

1 | (g2 +2Kg,0 +2K°0%)
[ = (23)

T om 2K
which is different from the normal expression used for the
ZOLZ; as a correction, 2K?6? is added for the curvature of
the Ewald sphere. A diagram showing the geometry is given
as Figure 2. Even though the incident illumination spans a
range of angles to form a disc in the diffraction pattern, only
a limited set will contribute to the FOLZ due to the rapid
attenuation by the term

sinz(ﬂ'rtsz)
— (24)
(7s,)
This is the reason why, in this simple theory, even with
convergent beam illumination, the FOLZ appear as narrow
lines whose width will be proportional to 1/s,. A more so-
phisticated treatment would consider “hybridization” with
the Bloch waves from the ZOLZ, which will give further
splittings (Buxton, 1976). One important point to note is
the different thickness dependence of the FOLZ scattering,
which varies as equation 24, and the thermal diffuse scat-
tering, which is linear in thickness.
A calculation showing the intensities of FOLZ elastic
scattering and thermal diffuse scattering for various thick-
nesses of Si (110) is given in Table 1. The FOLZ elastic
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Table 1. Elastic HOLZ Scattering and Thermal Diffuse Scatter-
ing for Si (110).

Thickness Thermal diffuse HOLZ elastic
200 A 1.29 x 107* 1.05 x 107
400 A 2.58 x 107* 228 x 107°
600 A 3.87 x 107* 3.43 x 107
800 A 5.16 x 107* 423 x 107°

1000 A 6.45 x 107* 5.66 x 107°

scattering is always less than 10%, which is probably still an
overestimate because it assumes a value of 0.0045 A~* for
the mean square displacement at room temperature. Using
this value to calculate a mean free path for attenuation by
thermal diffuse scattering gives a value of 100 p, which is
probably too high by a factor of 10. The curvature of the
Ewald sphere and the narrow width of the FOLZ line means
that a multislice calculation must sample reciprocal space
on a very fine grid with a spacing of about 0.1 mrad for a
500-A crystal. This would mean a supercell about 200 A
across in a typical semiconductor or metal. Failure to
sample at this high density could result in an overestimation
of the elastic FOLZ intensity compared with the thermal
diffuse intensity, since the calculation fails to select the very
narrow regions of reciprocal space where elastic FOLZ scat-
tering can occur. The results of multislice calculations on
the ratio of elastic-to-thermal diffuse intensity should there-
fore be viewed with caution (Wang and Cowley, 1989a,b).

IMAGING WITH ELECTRONS SCATTERED TO
HiGH ANGLES

Application to STEM Imaging

The theory for STEM imaging has been discussed exten-
sively by Cowley (1973a,b) and by Spence and Cowley
(1978). The ideas come from the reciprocal relationship
between STEM and high-resolution TEM. In STEM, the
field emission source is equivalent to a point in the detector
plane in TEM if the objective aperture is coherently filled.
Points in the detector in the STEM then become equivalent
to different positions in the TEM source. The amplitude
observed in the detector plane in the STEM is given by

d(s,r,) = f H(s — k)W(k)exp[—ik rp]dzk (25)

where H(s — k) represents the scattering of a thin object,
W(k) the effects of the object lens, r,, is the probe position,
k is a wave vector of the incident probe forming electrons,
and s is a wave vector for the scattered electron. The func-
tion W(k) representing the objective lens can now be ex-
pressed in terms of the aperture function A(k), which is 1
inside the aperture and O elsewhere, and the wave-front
aberration function k(k).

W(k) = A(k)exp[ix(k)] (26)
x(k) =¢r)\<Af- K +%csx2k4> (27)

The intensity, of course, is the square of the amplitude at
the detector plane

I(s,r,) = |d)(s,rp)|2 ' (28)

To explicitly bring out the variation of the signal with probe
position, it is best to decompose the incident wave vector as
k = q + g, where q is a wave vector in the first Brillouin zone
and g, h are reciprocal lattice vectors in the zero-order Laue
zone. The intensity for a slice dz becomes

di(sr,) = f > H(s — q — g)H*(s — q — h)
gh

A(q + g)A(q + H) x exp[ix(q + g)]
exp[ —ix(q + h)Jexp[—i(g — h) - r,]d’qdz (29)

where the integral over q representing different phonon
wave vectors is over the first Brillouin zone. If it is assumed
that atoms vibrate independently according to an Einstein
model then it is obvious that scattering from different slices
should be added incoherently. Even when phonon modes
are explicitly considered, the range of coherence is no more
than a few atomic layers (Jesson and Pennycook, 1995; see
also Appendix A). The probe is defined by the aperture
functions A(q + g) and the wave-front aberration function
x(q + g). Equation 29 is a Fourier series with an expansion
in terms of lattice vectors. There can only be Fourier coef-
ficients if the incident range of wave vectors, as defined by
the illumination aperture, is greater than the size of the
Brillouin zone, as shown in Figure 3. This is precisely the
point made by Spence and Cowley (1978), who showed that
lattice resolution is possible only if the probe objective
aperture semi-angle is greater than half a Bragg angle. From



Figure 3. Diagram showing scattering in reciprocal space.

the uncertainty principle this is equivalent to saying that the
probe size is less than the relevant lattice plane spacing if the
probe is coherent. The magnitude of the Fourier coefficients
is determined both by the electron optical parameters found
in the wave-front aberration function and the scattering in
the specimen. The theory for multiphonon scattering in the
specimen has been given in Appendix A. The HAADF signal
can be obtained by integrating equation 29 over the speci-
men thickness and the annular aperture and using equation
All from the appendix for the product of multiphonon
scattering matrix elements.

I(r,) = ffEh H(s — q= 9H*(s — q ~ hA@ +g)
8

A(q + h) x explix(q + g)] exp[-ix(q + h)]

exp[—i(g — h) - rp]dzqdzs (30a)
Hs—q—gH*(s—q—h)=
4 .
KZQZV 2 exp(—l(g - h) * ri)
0"c 1
[Z:~fils—q - 9N Z;— f(s—q )]
(s—q—-g°(s—q-h)’
x {exp[-M,(g — h)*] - exp[-M(s — q — g)°]

exp[-M,(s — q — h)’T} (30b)
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Figure 4. Schematic figure for thermal diffuse scattering in a crys-
tal.
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It is important to note that so far, we have not included
elastic scattering, and that it is not necessary for elastic
scattering to take place to achieve lattice resolution in high-
angle annular dark-field STEM.

Elastic Scattering before or after Large-angle
Multiphonon Scattering

So far we have only considered thermal diffuse scattering to
large angles. In the electron microscopy of crystalline speci-
mens there is always strong elastic scattering, especially
among beams in the zero-order Laue zone. It is therefore
necessary to consider multiple elastic scattering (dynamical
diffraction) both before and after the large-angle thermal
diffuse scattering event. This is shown schematically in Fig-
ure 4. The simplest way to represent dynamical diffraction
is to use matrix operators that represent the redistribution
of complex amplitude among a set of Bragg beams. They
can be formally derived from the Greens functions solutions
for the elastic scattering interactions (Dudarev et al., 1993).
These matrices are functions of crystal orientation, which is
best represented by a wave vector in the first Brillouin zone.
Let Qg (q',t-2) be the matrix that represents redistribution
among Bragg beams defined by wave vector q" and P,;,(q,z)
be the matrix that represents redistribution among beams
for incident radiation defined by wave vector q. The ma-
trices can be calculated by any of the methods used in the
theory of dynamical diffraction, such as the direct integra-
tion of the Howie-Whelan equations (Hirsch et al., 1965),
multislice calculations (Goodman and Moodie, 1974), ex-
pressions involving tight-binding Bloch waves (Buxton et
al., 1978), or Bloch waves expressed as sums of plane waves.
For convenience, we shall use Bloch waves that are the sums
of plane wave, in which case Qgy(q'st—2) and Py(gy2)
become
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P4(@2) = D, CY@)Ci(@expliki(q)z] (31)

Qar(a'st—2) = > D@D} (@)explikl (@)t-2]  (32)
-

The scattering amplitude to the HAADF detector can then
be represented in Fourier space by the function describing
the probe, the dynamical elastic scattering in the specimen
(equation 31), the thermal diffuse scattering to high angle,
H(q' + L — q — g), and any subsequent dynamical diffrac-
tion of the electrons scattered to high angles (equation 32).
The wave vector of the electrons scattered into the HAADF
detector is given by q' + L where q’ is in the first Brillouin
zone and L is an appropriate reciprocal lattice vector for the
HAADEF detector (see Fig. 3). The scattering amplitude is

dd(r,q" + L)=Qq(q'st—2)H(Q' + L — q — 8)P,(q,2)
A(q + h)exp[ix(q + h)Jexp(i(q + h) - r,)dz
(33)

The intensity in the dark field detector is given by

dryq +6)= > [ [ [ Qalart-2Qcuias -2
g,lz?’ih'
H(q'+L-q-gH(q+L' ~q-g)
X Pg(@:2)P*1(9:2)A(q + h)A(q + h')
X exp[ix(q + h)Jexp[~ix(q + h')]
exp[—ith—h") - rp]d2 qdz (34)

It should be noted that the products of the dynamical
diffraction propagator matrices are in fact elements of the
density matrix, which has been used previously in the
theory of high-energy electron scattering by Dudarev and
Ryazonov (1988), Rez (1977), and Wright and Bird (1992).
The Bloch wave expressions (equations 31 and 32) for the
propagation matrices could be substituted in equation 35
and the integration over z performed explicitly to give

Ir,)= 2, f f DD*D¥, Dy CLC*},C4,Cy
G,G\L,L'
&g hh

exp[i(k' — K)t] — exp[i(k’ — k")t
(K=K -k 1)
H*(q'+L'-q—g') X A(q+h')A(q+h')
exp[ix(q +h)]exp[—ix(q + h")]
exp[—ith—-h') - rp]dzqdzq' (35)

H(q'+L-q-g)

where the dependence on q or q' in the Bloch wave exci-
tation coefficients and the wave vector k' have been dropped
for simplicity.

At this time we should note that the Bloch wave ex-
pansion for the scattered wave is made up from plane wave
components with reciprocal lattice vectors in the first-order
Laue zone. This is because only plane waves with excitation
errors close to the Ewald sphere are excited, as shown in
Figure 2. The mathematical consequence is that these Bloch
waves from a complete set of states and the expressions
given in equations 34 and 35 can be considerably simplified
due to the orthonormality relations. The final state Bloch
wave coefficients satisfy

> Di@Di@) =3

2 Di@Di(@) =3y, (36)

and equation 35 reduces to

o explitki - K] -1
= 3 [[ oo, ==t
p L,[ZG,G' g~ h~ g“h (kl_k])

&g, hh

H(q+L-q-g)H(q'+L-q-g') X A(q+h)
A(q +h")exp[ix(q + h)Jexp[—ix(q + h")]
exp[-i(h - h") - r ]d’qd’q' (37)

Physically this means that it is not necessary to be con-
cerned about redistribution among the Bragg beams if an
integration over all final state beams is performed. The sum
over scattered state reciprocal lattice vector can now be
replaced by an integral over the annular dark-field detec-

tor.
{ ed exp[i(k' — K)t] - 1
)= [ J 3 [ qeicie, = —
ADF%:%,

H(s-q-gH(s—q-g') X A(q+h)
A(q +h"exp[ix(q + h)Jexp[~ix(q + h")]
exp[—i(h - h') - r,]d’qd’s (38)

where the product H(s — q — g)H(s — q — g') is given by the
expression All of Appendix A for thermal diffuse scatter-
ing, which was also used in equation 30. There is no re-
quirement to use the Bloch wave formalism to calculate the
effects of dynamical diffraction. One could explicitly leave



the expression in terms of the matrix propagator, which
could then be evaluated by other methods such as multislice

)= [ [ [ [ H6-q-gHGs-q-g)

ADF%Z
Py(@:2)P* gy(@s2) X A(q +h)A(q + h')explix(q+h)]
exp[—ix(q + h"}]exp[—i(h — h') - rp]dzqdzs (39)

In a multislice calculation it is more efficient to calcu-
late the matrices Py,(q,z) for all q values at the same time.
This could be done by performing the calculation by using
a supercell whose size is determined by how precisely one
needs to sample in the Brillouin zone. For example, if a
sampling of 8 points along the [200] direction is considered
adequate, then a cell 16 times the [100] direction would be
needed. The probe could then be represented as the Fourier
transform of equation 26 localized at a particular position
in the supercell. The advantage of working with the Bloch
wave formalism (or any other formalism that retains the
reciprocal lattice summations of equations 38 and 39) is
that the Fourier coefficients of the image intensity, which
were used by Hillyard and Silcox (1993) and by Loane et al.
(1992) to characterize experimental images, are calculated
explicitly.

As can be seen by comparing equations 30 with 38 and
39, the only effect of dynamical elastic diffraction is to in-
terpose the matrix product P,,(q,z)P*,,(q,z) between the
coherent electron probe and the thermal diffuse scattering.
This might lead to changes in the magnitudes of the Fourier
coefficients of the HAADF image and alter the contrast of
the lattice fringes. The formalism incorporating elastic scat-
tering before the thermal-diffuse, large-angle scattering is
essential for explaining the contrast of defects such as dis-
locations, which were observed in the HAADF detector by
Cowley and Huang (1992) and Perovic et al. (1993). Such
contrast might require more than one Bloch wave, as an
oscillating contrast is conventionally explained in terms of
interbranch transitions (Hirsch et al., 1965). This is incon-
sistent with the expression given by Pennycook and Jesson
(1990), where only one s-state Bloch wave is considered.

Equations 30 and 39, representing both the case of
thermal diffuse scattering on its own and thermal diffuse
scattering preceded by elastic scattering, can both be ex-
pressed in terms of a function F(q,h,h") which describes the
scattering to the HAADF detector by the specimen and
those terms which represent the incident probe.
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Ir,)=, f f F(ghh)A(q+h)A(g+h)
hh

explix(q +h)Jexp[—ix(q + h'lexp[—i — h") - r, ]d°q

(40)
where
1 t
Fahh)=3 [ [ [ Hs-q-gris-q-g)
€0 ADF
P (@)P* (@2 dsdz (41)

when dynamical elastic scattering precedes thermal diffuse
scattering into the HAADF detector and

1
Fighh) =7 f [J)‘F H(s — q — h)H(s — q - h')d’s
(42)

when there is only thermal diffuse scattering. It would be
particularly convenient if the part describing the effects of
scattering in the specimen could be represented by a local
scattering function and the HAADF intensity given by the
incoherent imaging expression

I(r) = F(r)|y(r)|2 (43)

Taking the Fourier transform, it can be seen that the scat-
tering in the specimen, F(q,h,h"), must be functions
ofh — h'

F(g,h,h’) = F(¢,h — h') (44)

As can be seen by examining equation 30b, this is only true
in the limit where s, the scattering vector to the high-angle
detector, is much greater than g and h, the reciprocal lattice
vectors in the zero-order Laue zone. The scattering vectors
s — q— gand s — q — h are then approximately equal to s
and equation 30b becomes

4

His - q-gH"(s—q~h) =—— >, exp(-ig—h) r)
0Yc 1t
2

Z ,
woP-Mg-h1] (49)
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The error in making this assumption can be estimated by
expanding equation 30b to first and second order in g and
h. The fractional error, Af, ignoring q compared with s is

2
N

$ df (s)
Af= 2[}2(5) As?) !

[ 24
i (5 d(s1)?

_MSZ] s-(g+h)

(s-g)+(s-h)’

4
s

S L) ] g+h
" [fx(s) ay M e

+2 +Mzs4]

(46)
S

The first two terms involving s - g and s - h average to
zero for an annular detector, leaving the third (second-
order) term, which is of order 5%, assuming that a zero-
order Laue zone reciprocal lattice vector corresponds to
about 10 mrad and the detector corresponds to about 100
mrad.

To summarize, the lattice resolution is a consequence
of the incident semi-angle being greater than half the Bragg
angle for the relevant lattice planes, while the contrast de-
pends on the Fourier coefficients of the scattering as given
in equations 38 and 39. These depend on the magnitude of
the thermal diffuse (multiphonon) scattering, the elastic
scattering in the crystal, and the electron optical parameters
that determine probe size. Only calculation can determine
the relative importance of all these effects, which will be
explored in the next section.

CALCULATIONS

A program was written based on equation 38 in which the
dynamical elastic diffraction is based on a Bloch wave rep-
resentation. The program is structured as a number of
nested loops. The outermost loops integrate over the Bril-
louin zone. At each point, the Bloch wave coefficients and
wave vectors are determined by diagonalisation of the com-
plex Hamiltonian matrix. The summations over the recip-
rocal lattice indices g,gh,h" were then performed and the
integration over the ADF detector, which only affected ther-
mal diffuse scattering matrix elements (equation Al1), was
left as the innermost loop. The calculation time is domi-
nated by the quadruple sum over gg'hh' and therefore
scales as the fourth power of the number of ZOLZ recip-

Figure 5. Si[110] HAADF simulated image for 1000-A specimen
from thermal diffuse scattering only (Equation 30) for 16.5 mrad
objective aperture, C, 0.8 mm, defocus 800 A, accelerating voltage
100 kV. Bar: 1.36 A.

rocal lattice vectors. For Si we used 13 vectors, which re-
sulted in computation times of 11 minutes on a SGI IRIS
workstation, and for InP we used 19 vectors, which in-
creased the computation time to about 1 hour. The ADF
detector was split into 5 radial and 10 angular segments for
this integration. In all cases except where otherwise stated,
the ADF detector accepted electrons scattered between 70
mrads and 200 mrads. A multislice calculation would scale
as the squre of the numbers of ZOLZ lattice vectors mul-
tiplied by the number of thicknesses and the number of
probe positions.

We have used the program to calculate HAADF images
and line profiles for the [110] and [100] projections of Si,
GaAs, and InP, as these have been extensively studied ex-
perimentally. Figure 5 shows a calculation for 1,000 A of Si
in the [110] projection for 100kV electrons where only the
thermal diffuse scattering as given by equation 30 is con-
sidered. The objective aperture of 16.5 mrad is more than
sufficient to accommodate the 400 reciprocal lattice vector
and the dumbbells are clearly resolved. This image also
shows that dynamical diffraction before thermal diffuse
scattering is not a necessary condition for lattice resolution.

The effects of the objective aperture size can be seen in
Figure 6, which shows calculated images using 13 beams for
1000 A of Si in the [110] projection at 100 kV. The line
profiles along the [100] direction in the 800 A defocus
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images are shown as Figure 7. From the line profiles, the use
of a 10.3-mrad aperture, which only includes the 111 and
220 reciprocal lattice vectors, does not resolve the dumb-
bells. When the aperture semi-angle is increased to 13.7
mrad, the two peaks are barely apparent but are clearly
resolved with a 16.5 mrad aperture, which includes recip-
rocal lattice vectors up to 400. Otherwise, the images are
relatively insensitive to defocus. Increasing the accelerating
voltage to 300 kV will of course result in a smaller probe size
and improved resolution. Images for apertures of 7.5 mrad
semi-angle, which is approximately equivalent to a 400 re-
ciprocal lattice vector, 12.0 mrad and 19.5 mrad, are shown
for defocus values of 400 A and 600 A in Figure 8. In all
cases the dumbbells are clearly resolved.

One of the strongest arguments for using HAADF im-
aging is that the signal should show strong dependence on
atomic number, which would make it possible to easily

Figure 6. Si[110] HAADF simu-
lated images for 1000-A speci-
men, C; 0.8 mm, accelerating
voltage 100 kV for objective ap-
pertures of (a) 10.6 mrad, (b) 13.7
mrad, and (¢) 16.5 mrad. Bar:
1.36 A.

—10.3 mrad. Ape.

— — -13.7 mrad.

--------- 16.5 mrad.
0.035 T T T T T T T T T T

0.030
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Figure 7. Line profiles along the [001] direction from the 800 A
defocus images of Figure 6.
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600 A

Af= 400 A

c

Figure 8. Si [110] HAADF simulated images for 1000-A speci-
men, C; 0.8 mm, accelerating voltage 300 kV for objective aper-
tures of (a) 7.5 mrad (b) 12.0 mrad, and (c¢) 19.5 mrad. Bar:
1.36 A.

distinguish columns of different atoms. We therefore cal-
culated the images of 1000 A of GaAs in the [110] projec-
tion shown in Figure 9. The dumbbells are made up from a
Ga and an As column, which are indistinguishable in the
image. Line profile plots show a small contrast. If the signal
in the HAADF detector followed Rutherford scattering,
then the contrast would be in the ratio of Z2. In Figure 10
the As/Ga contrast is plotted for a 40 mrad and an 80 mrad
inner cutoff as a function of outer detector angle. The signal
does not vary much with the outer angle and the detector
with an 80 mrad angle gives an As/Ga ratio of 1.19, which
is close to the ratio of 1.13 expected for pure Rutherford
scattering.

Another compound semiconductor that has been in-
vestigated by HAADF imaging is InP in the [100]
projection. Calculations for a 100 kV microscope with an
objective lens C, of 0.8 mm and an objective aperture
of 13 mrads semi-angle are shown as Figure 11 for a
number of different thicknesses. In this projection the
In and P atoms columns alternate. The contrast at the
P column appears to strongly depend on defocus. This
is more clearly demonstrated in the line traces along the

Figure 9. GaAs [110] HAADF simulated images for 1000-A speci-
men, C; 0.8 mm, accelerating voltage 100 kV, objective aperture

13.7 mrad. Bar: 1.41 A.

—— 40 mrad.
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Figure 10. Ratio of As-to-Ga intensity as a function of detector
outer cut-off wave vector for 40 mrad and 80 mrad inner detector
angle.

[110] direction, which are shown as Figure 12. Examin-
ing probe profiles as a function of defocus shows that a
subsidiary maximum can build up intensity between
the atomic columns. Care should therefore be taken in di-
rectly interpreting the atomic column intensity as propor-
tional to the square of atomic number in these circum-
stances.
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CONCLUSIONS

Scattering by any mechanism to a HAADF can always be
treated as a first-order perturbation. In crystalline speci-
mens the dominant scattering mechanism is multiphonon
excitation, often called thermal diffuse scattering. In the
limit of high-angle scattering, this is identical to Rutherford
scattering from a disordered array of atoms. Single-phonon
scattering does not give the same limiting form of the cross
section and single-phonon calculations could give spurious
image features. Elastic scattering to the high-order Laue
zone ring can be shown to contribute less than 10% to the
signal in a HAADF detector, in agreement with experimen-
tal observation. Furthermore, elastic scattering to the HOLZ
ring is highly concentrated in reciprocal space, and mul-
tislice calculations that do not sample reciprocal space with
adequate precision might give misleading estimates of the
proportion of elastically scattered electrons collected by the
HAADEF detector. Inelastic scattering from large energy loss
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Figure 11. InP [100] HAADF
simulated images for (a) 400 A,
(b) 600 A, and (c) 800 A defocus
C, 0.8 mm, accelerating voltage
100 kV, objective aperture 13
mrad. Bar: 3.24 A.
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0.031

0.020
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Relative Intensity(l/lo)
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Figure 12. Line profiles along the [110] direction from the simu-
lated images of the 110-A InP specimen shown in Figure 11.
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valence or inner shell excitations could also make a signifi-
cant contribution to the HAADF signal for light elements.

The lattice resolution in HAADF images arises because
they are formed with a coherent probe that subtends an
angle greater than the Bragg angle for the lattice planes in
the image. This is in accordance with the views of Spence
and Cowley (1978). The contrast is due to the multiphonon
thermal diffuse scattering which gives an approximate Z
dependence. The contrast mechanism can therefore be de-
scribed as incoherent. The theory shows that it is not nec-
essary for there to be dynamical elastic scattering before the
thermal diffuse scattering to achieve localization on strings
of atoms and hence, atomic resolution. In fact, experimen-
tal images of dislocations show that there must be more
than one Bloch wave present and that the probe does not
select only a single s state (Cowley and Huang, 1991). It has
also been shown that dynamical elastic diffraction for elec-
trons scattered into the HAADF detector has no effect, as it
only redistributes intensity in the detector.

The theory provides an efficient way to calculate
HAADF image contrast. Another advantage of the theory is
that it should be possible to simulate defect contrast by
substituting the appropriate dynamical diffraction propaga-
tor matrix Pgh(q,z). Calculations for semiconductors in the
[110] and [001] projections show that the contrast is rela-
tively insensitive to thickness. The resolution, as expected, is
related to the size of the coherently filled objective aperture.
There are cases when the tails of the probe function could
give spurious image intensities that might lead to errors in
measurement of apparent Z for a column. It is also unfor-
tunate that the multiphonon scattering can only be approxi-
mately described by an incoherent imaging model which
assumes a simple local potential, analogous to an absorp-
tion potential. For quantitative analysis of HAADF images,
it is necessary to calculate intensities using equations 38
or 39.

Imaging at high resolution using the HAADF signal is
a promising method for detecting substitutions by one or
two atoms in a single atomic column. The quantitative lat-
tice imaging method of Ourmazd et al. (1990) also has this
capability. It would therefore be interesting to compare the
two methods in terms of their sensitivity at a given speci-
men dose.
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APPENDIX A

In this appendix, the matrix element products for mul-
tiphonon (thermal diffuse) scattering used in the Imaging
with Electrons Scattered to High Angles section, and the
cross sections used in the High Angle Scattering section, are
derived following the theory of Hall and Hirsch (Hall and
Hirsch, 1965). For simplicity, we show the derivation for a
unit cell with only one type of atom.

We start by assuming that the wave function for the
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elastically scattered electrons at a depth z in a crystal can be
expanded as a set of plane waves

D(r) = Y, dy(2)explig - 1) (A1)
g

where g is a reciprocal lattice vector. The amplitude of
single scattering into a direction defined by s is then

b (9)= D, D, d2)fuls—Qexplils —g) 1) (A2)
g i

where r'; are the instantaneous atomic positions and f,(s)
are electron scattering fcctors. The intensity scattered to s is
then

L) = 222 b22)fs — gexpli(s — g) - (', ')
+ ZZEE b (Dfoils — Qs — )

g h#*g 1

(A3)
exp(is - (r';— rj)

ig-r';+ih-r")

The instantaneous position r'; can be written as the sum of
the static atom position r; and a displacement u; which
could arise from thermal excitation. Explicitly separating
terms referring to different atom positions gives

I(s) = >, bA2)fs - g)[N +
g
D expli(s — g) - (x; — ;) expli(s — ) - (u; = u,))]

i j#Ei

+ 2, b Dbu(@fls — s — 1)

g h#g
[Zexp(—i(g ~h)-r) exp(-ig —h) - u)
+ 22 exp(i(s—g) - r;+i(s—h) 1)
TR

exp(—i(s—g)-u;+i(s—h)- uj)]

(A4)

where the bar denotes time averaging and N is the number
of atoms in the crystal. Time averaging gives the following
relation for independently vibrating atoms

explis - (u;—u))] = exp(— % 5252> =exp(-Ms*) (A5)

where %” is the mean square atomic displacement and M is

the Debye Waller factor. Using equation A5 in equation A4
gives

I(s) = >, bX2)fs - g)[N +
g
D expli(s - g) - (x; — 7)) exp(~M(s - g>2>]

i jEi
+ 33 b Dbls - R)fulls — h)

g h#g

[2 exp(~i(g ~h) - r;) exp(-M(g — h)?)
+ 22 exp(i(s—g) - r;+i(s—h) 1)

ii#Ei

exp(—M(s — g)?)exp(—M(s — h)”)] (A6)

To determine the thermal diffuse contribution, the elastic
scattering, Ig(s), from the static atom positions r; must be
subtracted.

Iy(s) = Ecb (@) (s — 8) exp(~M(s — g)?)

[N+ EE exp(i(s—g) - (r;— rj))]

i jEi
+ 23 b bfuls — Dfsls ~ B)
g h+g

exp(~M(s — g))exp(~M(s - h)?)
X [Eexp(—i(g—h) 1)

+ 22 exp(i(s—g) - r;+i(s—h)- l‘j)] (A7)

i j#i

The final expression for the thermal diffuse intensity

Irps(s) = 2 d22)f(s — @)1 — exp(-M(s — 8)*)IN
4
+ 2, bl uls — s — WNgy

g h#g

Dlexpl-ig—h) - 1) X

[exp(~M(g — h)?) — exp(-M(s - 8)*) (A8)

exp(~=M(s - h)*)]
where N is the number of unit cells in the crystal and the
summation over atomic positions is restricted to the unit
cell. The first term can be identified with thermal diffuse or
multiphonon scattering by a vector s — g from a plane wave,
while the second term results from the interference between
two plane wave components identified by the reciprocal



lattice vectors g and h. To derive equation 18, which is a
thermal diffuse scattering cross section per atom, the Mott
formula equation 1, should be used for the electron scat-
tering factor f,(s) and equation A8 divided by N.

[1- exp(—Msz)]ds (A9)
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() =L

0

The second term is used in the expression for thermal dif-
fuse scattering from convergent beam probes and is best
expressed as an increase in scattered intensity per specimen
depth per unit area. It appears in the Imaging with Elec-
trons Scattered to High Angles section as a product of ma-
trix elements. Again, the Mott formula for the electron scat-
tering factor is substituted in A8 to give

dlps(s)

i =H(s—g)H*(s—h)=

4 . (Z-f(s=@NZ~fls—h)]
2V, Z exp(—-i(g—h)-r) (5—g/(s—h)’
X {exp[-M(g — h)*] — exp[-M(s — g)*Jexp[—-M(s — h)*]}
(A10)

which is similar to the expression for multiphonon scatter-
ing derived by Radi for anomalous absorption due to pho-
non scattering (Radi, 1970). This can be easily general-
ized to

H(s—q-gH*(s—q-h)=

4
3 2 exp(-i(g—h)-r;)
aOVC i
[Z; _fjc(S -q-91Z “fjc(S -q—h)]
(s-q-g)°(s—q-h)’
X {exp[—Mi(g - h)z] - exp[—M,—(s -q- g)z]

exp[ -Mi(s - q - h)z]}

(A11)

where Z; is the atomic number, f. is the X-ray scattering
factor, and M; is the Debye-Waller factor for atom of type
i, when there is more than one type of atom in the unit cell.

To derive the equivalent expression for a general pho-
non dispersion, the Glauber correlation function should be
used (Glauber, 1955). Equation A10 now becomes
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dl
%(s) =H(s-g)H*(s—h)=

4 [Z-f(s-gNZ-f(s—h)] .
W Gopehy 2 oRCiEh

X Z exp|:i(s+ th-
J

- g)>AR,«,}exp[—M<s -]
exp[~M(s — h)*Hexp[(s - ) (AR (s — )] - 1}

(A12)
where AR;; = r; — 1; is the atomic separation and C(AR;)) is

the correlation function which, for simple systems with one
type of atom, is given by

KV, dk ,
; e’ef f ) (exp(zk- AR;)

CIAR;) = m)°M,

2cos(ik - ARij))

+ exp(Bhw) — 1 (A13)

where M, is the atomic mass, B is 1/kgT, T is the tempera-
ture, and e, refers to the phonon polarization. In the Ein-
stein model C(AR;) is ﬁ28i,j and A12 reduces to A10. If an
isotropic Debye model is used for phonon dispersion then
equation A12 can be approximately integrated, giving a sinc
function in atomic separation (Jesson and Pennycook,
1995). Even under these circumstances, “coherence” is
maintained only over about 3-7 interatomic spacings.

APPENDIX B

Contribution of Inelastic Scattering to the
HAADF Detector

Although it is generally believed that inelastic scattering is
strongly forward peaked and has little chance of reaching a
high-angle detector, a small but significant fraction of in-
elastically scattered electrons can be scattered through large
angles in the form of Compton scattering. The general ex-
pression for the differential scattering cross section for in-
elastic scattering is

'L an;|QU7lexpliq - D)
dEdQ 2 qt (B1)

where g is the scattering wave vector and {; and \s; are the
initial and final state wave functions, respectively, and #; is
the number of electrons in atomic subshell i. At high
enough energies above an edge threshold, the electron in
the final state is little influenced by the potential of the solid
and can be expressed as a plane wave, wave vector kg
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&FI 4, |{exp(— ik¢ - r)|exp(iq * r)lb,-)|2
dEdQ g2 q

(B2)

The initial state wave function ; is slowly varying, com-
pared with the rapid oscillations of the final state plane wave
and, to a first approximation, can be assumed constant.
Performing the integral for the matrix element gives
8(k¢— q). When the energy transfer is large, the binding
energy of the atomic electron is insignificant and the excited
electron behaves as if it was a free electron with energy
E=1#q°/2m. At an energy E above the threshold for that
subshell, the spectrum only has electrons scattered by a
wave vector g = \/2111—13/7’1. This sharp feature is known as the
Bethe ridge and gets narrower with increasing energy above
threshold. The differential cross section becomes

ﬁzqz
&1 4n-6<E - 2m )
_ (B3)
dEQT 2 g
Only electrons with energy from E,=#%q/2m to

E;= hzqf/Zm will contribute to the signal observed by the
HAADF detector where g; and q; define the inner and
outer cutoff wave vectors for the detector. Integrating the

signal from E; to E is equivalent to integrating the signal
between g, and g The integral cross section becomes

4n; 1 2wqdq  4wn; [ 1 1
:fq 4 (—2——2> (B4)
9 4qi

where K is the fast electron wave vector.
This can be compared to an approximate value for the
integrated Rutherford scattering with the same limits.

fq, 47° 1 2mqdq 4nZ* (1 1
R S (qf q?) (5
The sum over subshells is approximately given by the
atomic number Z = 3n, assuming that the contribution
from subshells whose t;inding energy is a sizable fraction of
the beam electron energy is relatively small. Comparing
equations B4 and B5 shows that the ratio of elastic to in-
elastic scattering in the HAADF detector is Z, the atomic
number. For first-row light elements some estimate of the
inelastic contribution to the detector should be included if
better than 10% accuracy is desired in the calculation.
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