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Abstract: The theoretical interpretation of lattice resolution in high-angle annular dark-field images produced 
in a scanning transmission electron microscope (STEM) has been a subject of controversy. A first-order 
perturbation theoretical analysis is presented here, which shows that the contrast in the image arises froin 
large-angle multiphonon, incoherent scattering, which is atomic number dependent. The lattice resolution is a 
consequence of coherently filling the objective aperture, and dynamical elastic diffraction preceding the large- 
angle multiphonon scattering is not a necessary requirement. Elastic scattering to the higher order Laue zone 
(HOLZ) is also show11 to be negligible, compared with the incoherent scattering. Calculations from application 
of the theory are also presented. They show that lattice images formed using the high-angle annular dark-field 
detector are sensitive to atomic number and are relatively insensitive to defocus. Although high-angle annular 
dark-field lattice imaging appears to be simple, scattering into the high-angle detector can only be approxi- 
mately described by an incoherent imaging model. 
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In the scanning transmission electron microscope (STEM) a 
highly coherent source of energetic electrons is demagnified 
by means of lenses to form a nanoprobe that is rastered 
across the specimen. The probe electrons can be both elas- 
tically and inelastically scattered in their interaction with 
the specimen. The inelastically scattered electron distribu- 
tion has a narrower angular distribution, and by judicious 
choice of collection apertures, an approximate separation 
can be made between the large-angle elastic scattering and 
the smaller-angle inelastic scattering. Furthermore, the in- 
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elastically scattered electrons can be energy analyzed by 
passing them through an energy loss spectrometer. Signals 
from all these detectors can be displayed on a monitor in 
synchronism with the raster of the probe, either individually 
or combined in an appropriate manner, to form scanned 
images. 

Since the pioneering work of Crewe (Crewe, et al., 
1968; Crewe and Wall, 1970) on the imaging of single heavy 
atoms by using the ratio of the annular detector signal and 
the small-angle bright-field signal, there has been consider- 
able interest in the Z-contrast and related techniques as 
analytical tools for compositional and structural determi- 
nation. Crewe argued that the annular dark-field signal 
would be proportional to the elastic scattering and the 
bright field would be proportional to the inelastic scatter- 
ing. The ratio of elastic to inelastic scattering is approxi- 
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mately proportional to the atomic number, 2, according to 
the simple theory of Lenz. The annular aperture of Crewe et 
al. subtended a relatively small angle of 20 mrads and the 
signal in crystalline specimens was sensitive to diffraction 
effects. Howie (1979) suggested that an annular aperture 
with a large inner cutoff, such as 50 mrad at 100 kV, would 
only pick up high-angle Rutherford scattering that goes as 
z2, since the Bragg spots are attenuated by the Debye- 
Waller factor. His ideas have been very successfully applied 
in studies of heavy-metal catalyst particles on light-element 
support films. Treacy and Rice (1989) used the signal col- 
lected at high angle to estimate the number of atoms in a 
supported catalyst cluster. By making assumptions about 
particle shape, they used the digitized image to attempt a 
calibration of intensity increment per atom. They calculated 
that Pt clusters containing as few as three atoms on a 200-A 
thick y-alumina substrate would be detectable by using a 
probe of 3.5 A. This has also lead to studies on appropriate 
scattering cross-sections for high-angle annular dark-field 
detectors (Pennycook et al., 1986). 

Following the multislice calculations of Kirkland et al., 
who investigated the suitability of high-angle dark field to 
study the sites of surface adatoms, it was realized that lattice 
resolution of crystals was possible by using the high-angle 
annular dark-field (HAADF) signal (Kirkland et al., 1987; 
Loane et al., 1988). The first results were published by Pen- 
nycook and Boatner (1988) who applied the method to the 
high T, superconductor YBa,Cu,O,_,. Subsequently, Pen- 
nycook and Jesson used the technique to study Si and InP 
(Pennycook and Jesson, 1990) and SiIGe multilayers (Pen- 
nycook and Jesson, 1991). These results were followed by 
HAADF lattice images from Si (110), Si (loo), and InP 
(100) by Silcox and colleagues (Loane et al., 1991, 1992; 
Silcox et al., 1992; Hillyard and Silcox, 1993; Hillyard et al., 
1993). 

The theoretical interpretation of these images has been 
controversial. Pennycook and co-workers argued that, pro- 
vided a probe smaller than interplanar spacing can be 
formed, the lattice will be resolved and the imaging can be 
understood on the basis of incoherent scattering. The theo- 
retical description is then a simple sum of individual inten- 
sities from an assembly of incoherent scatterers. This idea 
was later modified (Pennycook and Jesson, 1990) to incor- 
porate localization on atomic columns by the s-state Bloch 
waves that were selected by the convergent probe. From a 
practical perspective it then became possible to calculate the 
intensities in the image by convoluting a probe with a func- 
tion representing the scattering of each column (Silcox et 

al., 1992; Hillyard et al., 1993). It was also shown that even 
for coherent elastic scattering, the scattering from each col- 
umn was independent of scattering from other columns 
(Treacy and Gibson, 1993; Jesson and Pennycook, 1995). 
The independent scattering model was modified by consid- 
ering scattering from multiphonon thermal diffuse pro- 
cesses instead of simple Rutherford scattering (Jesson and 
Pennycook, 1993, 1995). Under these circumstances there is 
no coherence in scattering between atomic columns, and 
the coherence in the beam direction only extends across a 
small number of atoms in the column (Jesson and Penny- 
cook, 1995). Ideally, the contrast for each atomic column 
would be proportional to z2, independent of thickness. Cal- 
culations showing an atomic number-dependent saturation 
of column intensity with thickness suggest that this simple 
view should be modified by different absorption factors for 
the channeled states (Hillyard et al., 1993). 

The other approach has involved the use of multislice 
calculations with periodic continuation to simulate the 
propagation of a probe through the solid. The amplitude 
scattered into a high-angle detector is summed for each slice 
of the calculation. Implicit in this approach is a belief that 
the probe is coherent and propagates through the crystal by 
coherent scattering processes. This view is consistent with 
the theory of Spence and Cowley (1978), who argued that 
lattice resolution in STEM comes about from coherently 
filling an.objective aperture that subtends an angle greater 
than the relevant Bragg angle. Scattering into the high-angle 
detector either comes from single-phonon scattering (Wang 
and Cowley, 1989a,b) or as a result of averaging over many 
configurations of atomic displacements (Kirkland et al., 
1987; Loane et al., 1991). The latter approach is equivalent 
to multiphonon scattering with an Einstein (constant fre- 
quency) dispersion relation for the phonons. It has also 
been suggested (Spence et al., 1989) that the image process 
is totally coherent and that the HAADF image arose solely 
from elastic scattering to the first-order Laue zone. 

In the present work, we analyze scattering into the 
high-angle annular dark field detector by perturbation 
theory. The various mechanisms for large-angle scattering 
are examined and we show that in the high-angle limit 
multiphonon scattering, using an Einstein model for pho- 
non dispersion is equivalent to Rutherford scattering. We 
show that single-phonon scattering is incorrect in both the 
small- and large-angle limits and that thermal diffuse scat- 
tering is more significant than elastic scattering to the first- 
order Laue zone. We also show that inelastic scattering 
could make a substantial contribution for light elements. 
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We then develop a general expression for HAADF im- 
aging which incorporates the effects of the probe-forming 
lens, multiphonon large-angle scattering, and dynamical 
diffraction both before and after the large-angle scattering 
event. The effects of dynamical scattering after scattering 
into the HAADF detector can be neglected. Our theory 
shows that although the contrast can be understood on the 
basis of incoherent scattering, the lattice resolution is a 
coherent effect that arises from the interference among dif- 
ferent wave-vector components of the probe that are sepa- 
rated by Bragg vectors, in accordance with the theory of 
Spence and Cowley (1978). 

Finally, we present calculations showing the sensitivity 
to atomic number and the insensitivity to defocus or speci- 
men thickness of HAADF lattice images. The resolution, as 
expected, depends on the size of the aperture and acceler- 
ating voltage. We also show that the effect can only ap- 
proximately be described by the incoherent imaging theory, 
which implies a simple, local absorption-like potential. 

Contribution to HAADF Signal from Single 
Atom Scattering 

The simplest description of high-angle scattering is Ruth- 
erford scattering, which assumes that the electrons interact 
independently with the coulomb potential from the atomic 
nuclei. The amplitude scattered by the wave vector, s or 
electron scattering factor, is 

where Z is the atomic number and a, the Bohr radius. The 
cross section is simply the square of the electron scattering 
factor. A problem with the Rurtherford cross section is that 
both the differential scattering cross section and the inte- 
grated scattering cross section become infinite as the scat- 
tering wave vector (or in the case of the integrated cross 
section the minimum scattering wave vector) tend to zero. 
This singularity can be removed by using a screened cou- 
lomb potential 

where so is the permittivity of free space. The electron scat- 
tering factor becomes 

and the cross section is well behaved as s tends to zero. The 
screening parameter, y, is an attempt to incorporate the 
extra scattering due to the atomic electrons. This can be 
done exactly if the Mott formula for the electron scattering 
factor is used 

where f,(s), the X-ray scattering factor, is the Fourier trans- 
form of the electron charge density and describes the cou- 
lomb scattering by the atomic electrons. The X-ray scatter- 
ing factor f,(s) tends to Z as s tends to zero, which means 
that the electron scattering factor is well behaved in this 
limit and Z - f,(s) b e c ~ m e s j " ~ ( s ) s ~ .  As s becomes large, fx(s) 
tends to zero and the electron scattering factor becomes 
identical to that for Rutherford scattering. A common pa- 
rameterization for f,(s) is a sum of 4 Gaussians (Doyle and 
Turner, 1968) 

Care must be taken that Z in Equation 5 is made to equal to 
aj, otherwise the electron scattering factor will describe 

scattering from ionized atoms. 

Phonon Contribution to HAADF in Solids 

So far we have considered scattering by isolated atoms. In a 
solid, elastic scattering is confined to the Bragg spots. Scat- 
tering between the Bragg spots only comes about from in- 
elastic excitations. Plasmons and the majority of single- 
electron excitations only result in relatively small scattering 
angles of ~ / m ? ,  where E is the energy loss and v is the 
electron velocity. Even at 100 kV this angle will not exceed 
1 mrad for a 100 eV loss. Most of the scattering between 
Bragg spots comes from events involving the creation or 
destruction of acoustic phonons. Although the energy losses 
are small, usually less than 20 meV, the scattering angles can 
be quite large and are typically about 1 or 2 Bragg vectors 
(Rez et al., 1977). The theory for single-phonon scattering is 
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based on the expression for the structure factor in which the 
atom positions are shifted by displacements u(r) and can be 
found in standard solid-state physics textbooks (Kittel, 
1986). In a simplified case, with one atom per unit cell, the 
phonon scattered amplitude +(s) for scattering wave vector 
s is 

For convenience, the scattering wave vector s is separated 
into a part inside the first Brillouin zone, q, and a reciprocal 
lattice vector g 

It is assumed that the displacements u(r) are small and that 
the product s.u(r) < 1. This part of the exponential can 
then be expanded to first order to give the phonon scatter- 
ing amplitude 

and hence the phonon scattering intensity is 

Assuming an isotropic phonon dispersion (relation between 
frequency and wave vector), averaging over angle, neglect- 
ing differences between transverse and longitudinal polar- 
ization and summing over processes involving both the 
creation and destruction of a phonon of wave vector q gives - 
u2, the average displacement squared in terms of the occu- 
pation number Nq for phonons of wave vector q 

The occupation number for a phonon of frequency w, wave 
vector q, is given by the usual Bose-Einstein factor 

where h is Plank's constant divided by 2n, kB is Boltzmann's 
constant, and T is the temperature. Substituting equation 10 
in equation 9 gives 

Interaction (arb. units) 

5 

Figure 1. Intensity of phonon scattering for gold as a function of 
scattering wave vector showing the effects of the dispersion model. 
The scattering wave vector is in units of the 200 reciprocal lattice 
vector. 

for the phonon scattered intensity. 
For low-energy acoustic phonons at room temperature, 

hw(q) < kgT and the Bose Einstein factor becomes 

and the intensity is now 

This formula can be used to understand the distribution of 
single phonon scattering in diffraction patterns. The pho- 
non frequency o(q), like an energy band, is periodic from 
one Brillouin zone to the next. The overall intensity distri- 
bution is given by s2fe12(s) which peaks approximately be- 
tween the first and second reciprocal lattice point in a close 
packed direction for common metals and semiconductors 
(see Fig. 1). A simple treatment of the frequency of the 
phonon as a function of wave vector (the phonon disper- 
sion relation), assuming the atoms can be treated as a linear 
chain in the wave-vector direction, gives 
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where C is the elastic constant and a is the repeat distance 
in the direction under consideration. 

It can easily be seen that when q is small, the phonon 
dispersion is linear and can be approximated as w(q) = v,q 
where v, is the speed of sound. This is called the Debye 
model for the dispersion relation and is of significance in the 
theory of the low temperature-specific heat. Examining 
equation 14 by using either equation 15, or the Debye dis- 
persion, shows that the phonon scattered intensity will be 
peaked around the Bragg spots. Furthermore, the intensity 
for s = 0 will tend to a constant value. A more sophisticated 
treatment of phonon dispersion (Begbie, 1947, Begbie and 
Born, 1947) where interactions of a three-dimensional lat- 
tice are considered leads to phonon dispersion relations in 
which low values of the frequency are found along simple 
crystallographic directions. According to equation 14, low 
frequencies mean higher intensities which appear as the 
thermal streaks often observed in diffraction patterns. It is 
not surprising that they are more easily observed around 
low-order reciprocal lattice points where the envelope term 
in equation 14 is peaked, though elastic dynamical diffrac- 
tion will redistribute the intensity around all the reciprocal 
lattice points in the zero-order Laue Zone. 

Another popular dispersion relation is the Einstein 
model in which it is assumed that the frequency is fixed at 
the Einstein frequency w(q) = o, and does not vary with the 
wave vector. This is actually quite a reasonable approxima- 
tion for higher-frequency optic modes that are present 
when there is more than one atom per unit cell but, as can 
be seen from equation 15, it is totally inappropriate for the 
low-frequency acoustic modes that give rise to most of the 
scattering. Another way of looking at the Einstein model is 
to assume that atoms are independently vibrating at the 
Einstein frequency. 

The phonon scattered intensity is now 

which behaves as 

as s gets large and approaches zero as 5 tends to zero. Clearly 
this does not go to the same limits as Rutherford scattering 
either for small or large angles. A two-dimensional Fourier 
transform of the single-phonon scattering distribution 
(equation 16) will result in a doughnut-shaped function in 
real space, as seen in the calculations of Wang and Cowley 
(1989a,b). This effect has not been observed in the experi- 
mental images, which supports the idea that single-phonon 
scattering alone is not responsible for scattering to the 
HAADF detector. 

For scattering angles greater than 50 rnrad, s.u is 
greater than 0.5 and the simple first-order expansion of 
equation 6 is no longer valid (Konnert and D'Antonio, 
1991). Higher-order terms in the expansion of the expo- 
nential in equation 6 have to be considered. Physically, 
these correspond to the creation or destruction of more 
than one phonon in the scattering event. The total scatter- 
ing is derived from summing all such terms. This requires 
extensive computation if a realistic or even a Debye phonon 
dispersion is used, but it can be performed analytically if an 
Einstein dispersion relation is assumed (Earney, 1971). An 
approximate result for a general dispersion relation can be 
calculated by using the correlation function of Glauber 
(1955). This more sophisticated approach has been applied 
to HAADF imaging by Jesson (Jesson and Pennycook, 
1995). Another way to derive the same result for the Ein- 
stein model is to follow the arguments of Hall and Hirsch 
(1965) which are given in Appendix A. The final expression 
for the multiphonon or thermal diffuse scattering cross sec- 
tion is equation A9 

where M is the Debye-Waller factor, which can also be 
written in terms of the mean square atomic displacement if 
independently vibrating atoms are assumed. The Debye- 
Waller factor is given by 

where 0, is the Einstein temperature, which is related to the 
Einstein frequency by 
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Equation 18 tends to equation 1, the Rutherford scattering 
formula, as s becomes large, and approaches a constant 
value as s goes to zero. This behavior is to be expected as 
there should be no difference between atoms in a solid 
vibrating in an uncorrelated manner and free atoms in a 
dilute gas. 

Although most inelastic scattering is confined to small 
angles, it is of interest to evaluate possible inelastic contri- 
butions to the HAADF detector. Scattering for valence and 
inner shell electrons involving large energy losses is concen- 
trated as a momentum transfer equivalent to that for a free 
electron whose energy is identical to the energy loss of the 
fast electron. The resulting peak in the angular distribution 
of scattered intensity is known as the Bethe ridge (Egerton, 
1986). A simple theory for the intensity is given in Appen- 
dix B. The approximate ratio of the elastically scattered 
intensity to the high-angle, inelastically scattered intensity is 
Z, the atomic number. For light elements such as carbon, 
this inelastic contribution could be significant and should 
be considered in quantitative imaging with the HAADF 
detector. 

Elastic Scattering to Upper Layer Ring 

Spence et al. (1989) have suggested that a substantial part of 
the signal collected by the HAADF detector comes from the 
first-order Laue zone ring. If this were true, the theory for 
the intensity collected would be quite different and there 
would be no doubt that the scattering and contrast arise 
from coherent diffraction effects. Pennycook showed ex- 
perimentally that the contribution of the first-order Laue 
zone was about 1% of the thermal diffuse scattering inten- 
sity collected by the detector (Pennycook and Jesson, 1991). 
It is very easy to calculate the theoretical ratio of thermal 
diffuse to first-order Laue zone scattering, as both can be 
treated by first-order perturbation theory. The scattering 
for thermal diffuse scattering has been derived above and 
the integrated cross section for scattering to a detector with 
inner angle corresponding to wave vector smi, and outer 
angle corresponding to wave vector s,,, is 

where K is the fast electron wave vector. As the scattering is 
incoherent, the total scattering for an element with N at- 
oms-unit volume of thickness t is Nut. 

The first order Laue zone (FOLZ) scattering is given by 

Figure 2. Geometry for scattering to the first order Laue zone 
(FOLZ). 

the kinematic scattering expression, including the effects of 
the Debye Waller factor, which are significant for these high 
scattering angles. For example, in Si (1 10) at 100 kV, the 
FOLZ ring corresponds to an angle of 137 mrad. The cross 
section is 

where the excitation error for upper layer line, s,, is 

which is different from the normal expression used for the 
ZOLZ; as a,correction, 2 ~ ~ 0 ~  is added for the curvature of 
the Ewald sphere. A diagram showing the geometry is given 
as Figure 2. Even though the incident illumination spans a 
range of angles to form a disc in the diffraction pattern, only 
a limited set will contribute to the FOLZ due to the rapid 
attenuation by the term 

This is the reason why, in this simple theory, even with 
convergent beam illumination, the FOLZ appear as narrow 
lines whose width will be proportional to lls, A more so- 
phisticated treatment would consider "hybridization" with 
the Bloch waves from the ZOLZ, which will give further 
splittings (Buxton, 1976). One important point to note is 
the different thickness dependence of the FOLZ scattering, 
which varies as equation 24,  and the thermal diffuse scat- 
tering, which is linear in thickness. 

A calculation showing the intensities of FOLZ elastic 
scattering and thermal diffuse scattering for various thick- 
nesses of Si (110) is given in Table 1. The FOLZ elastic 
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where H(s - k) represents the scattering of a thin object, 
Table 1. Elastic HOLZ Scattering and Thermal Diffuse Scatter- 

W(k) the effects of the object lens, r,  is the probe position, ing for Si (1  10). 
k is a wave vector of the incident probe forming electrons, 

Thickness Thermal diffuse HOLZ elastic and s is a wave vector for the scattered electron. The func- 
200 A 1.29 x 1.05 x tion W(k) representing the objective lens can now be ex- 
400 A 2.58 x 2.28 x pressed in terms of the aperture function A(k), which is 1 
600 A 3.87 x 3.43 x inside the aperture and 0 elsewhere, and the wave-front 
800 A 5.16 x 4.23 x lo-' aberration function ~ ( k ) .  

1000 A 6.45 X 5.66 X 

*(k) = A(k)exp[ix(k)l ( 2 6 )  

scattering is always less than lo%, which is probably still an 
overestimate because it assumes a value of 0.0045 A-2 for 
the mean square displacement at room temperature. Using 
this value to calculate a mean free path for attenuation by 
thermal diffuse scattering gives a value of 100 p, which is 
probably too high by a factor of 10. The curvature of the 
Ewald sphere and the narrow width of the FOLZ line means 
that a multislice calculation must sample reciprocal space 
on a very fine grid with a spacing of about 0.1 mrad for a 
500-A crystal. This would mean a supercell about 200 A 
across in a typical semiconductor or metal. Failure to 
sample at this high density could result in an overestimation 
of the elastic FOLZ intensity compared with the thermal 
diffuse intensity, since the calculation fails to select the very 
narrow regions of reciprocal space where elastic FOLZ scat- 
tering can occur. The results of multislice calculations on 
the ratio of elastic-to-thermal diffuse intensity should there- 
fore be viewed with caution (Wang and Cowley, 1989a,b). 

The intensity, of course, is the square of the amplitude at 
the detector plane 

To explicitly bring out the variation of the signal with probe 
position, it is best to decompose the incident wave vector as 
k = q + g, where q is a wave vector in the first Brillouin zone 
and g, h are reciprocal lattice vectors in the zero-order Laue 
zone. The intensity for a slice dz becomes 

where the integral over q representing different phonon 
1h4AG1NG ELEcTi70Ns ScATTERED To wave vectors is over the first Brillouin zone. If it is assumed 
HIGH ANGLES that atoms vibrate independently according to an Einstein 

model then it is obvious that scattering from different slices 
Application to STEM Imaging should be added incoherently. Even when phonon modes 

The theory for STEM imaging has been discussed exten- 
sively by Cowley (1973a,b) and by Spence and Cowley 
(1978). The ideas come from the reciprocal relationship 
between STEM and high-resolution TEM. In STEM, the 
field emission source is equivalent to a point in the detector 
plane in TEM if the objective aperture is coherently filled. 
Points in the detector in the STEM then become equivalent 
to different positions in the TEM source. The amplitude 
observed in the detector plane in the STEM is given by 

are explicitly considered, the range of coherence is no more 
than a few atomic layers (Jesson and Pennycook, 1995; see 
also Appendix A). The probe is defined by the aperture 
functions A(q + g) and the wave-front aberration function 
~ ( q  + g). Equation 29 is a Fourier series with an expansion 
in terms of lattice vectors. There can only be Fourier coef- 
ficients if the incident range of wave vectors, as defined by 
the illumination aperture, is greater than the size of the 
Brillouin zone, as shown in Figure 3. This is precisely the 
point made by Spence and Cowley (1978), who showed that 
lattice resolution is possible only if the probe objective 

+(sJp) = S H(s - k)v(k)exp[-l*. rpld2k (25) aperture semi-angle is greater than half a Bragg angle. From 
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Figure 3. Diagram showing scattering in reciprocal space. 

the uncertainty principle this is equivalent to saying that the 
probe size is less than the relevant lattice plane spacing if the 
probe is coherent. The magnitude of the Fourier coefficients 
is determined both by the electron optical parameters found 
in the wave-front aberration function and the scattering in 
the specimen. The theory for multiphonon scattering in the 
specimen has been given in Appendix A. The HAADF signal 
can be obtained by integrating equation 29 over the speci- 
men thickness and the annular aperture and using equation 
A l l  from the appendix for the product of multiphonon 
scattering matrix elements. 

4 
- x exp-i(g - h) . r,) 
K ~ ~ : v ,  i 

~ i a s t i c  
P ( q 4  Scattering 

Thermal 
H(s-q-g) D ~ f f u s e  

Scattering 

Dynarnical 
~ ( ~ ' ( t - ~ )  Elastic 

Scattering 

Figure 4. Schematic figure for thermal diffuse scattering in a crys- 
tal. 

It is important to note that so far, we have not included 
elastic scattering, and that it is not necessary for elastic 
scattering to take place to achieve lattice resolution in high- 
angle annular dark-field STEM. 

Elastic Scattering before or after Large-angle 
Multiphonon Scattering 

So far we have only considered thermal diffuse scattering to 
large angles. In the electron microscopy of crystalline speci- 
mens there is always strong elastic scattering, especially 
among beams in the zero-order Laue zone. It is therefore 
necessary to consider multiple elastic scattering (dynamical 
diffraction) both before and after the large-angle thermal 
diffuse scattering event. This is shown schematically in Fig- 
ure 4. The simplest way to represent dynamical diffraction 
is to use matrix operators that represent the redistribution 
of complex amplitude among a set of Bragg beams. They 
can be formally derived from the Greens functions solutions 
for the elastic scattering interactions (Dudarev et al., 1993). 
These matrices are functions of crystal orientation, which is 
best represented by a wave vector in the first Brillouin zone. 
Let QGH (qr,t-z) be the matrix that represents redistribution 
among Bragg beams defined by wave vector q '  and P$,(q,z) 
be the matrix that represents redistribution among beams 
for incident radiation defined by wave vector q. The ma- 
trices can be calculated by any of the methods used in the 
theory of dynamical diffraction, such as the direct integra- 
tion of the Howie-Whelan equations (Hirsch et al., 1965), 
multislice calculations (Goodman and Moodie, 1974), ex- 
pressions involving tight-binding Bloch waves (Buxton et 
al., 1978), or Bloch waves expressed as sums of plane waves. 
For convenience, we shall use Bloch waves that are the sums 
of plane wave, in which case QGH(qr,t-z) and Pyh(q,z) 
become 
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Pgh(q,z) = x ci(q)~L(q)ex~[ik:(q)z] (31) where the dependence on q or q' in the Bloch wave exci- 
1 tation coefficients and the wave vector ki have been dropped 

for simplicity. 

QcL(ql,t - z) = x ~ ~ ( ~ ' ) ~ ~ ( ~ ' ) e x p [ i k ~ ( ~ ' ) ( t  - z)] (32) At this time we should note that the Bloch wave ex- 
j' pansion for the scattered wave is made up from plane wave 

The scattering amplitude to the HAADF detector can then 
be represented in Fourier space by the function describing 
the probe, the dynamical elastic scattering in the specimen 
(equation 31), the thermal diffuse scattering to high angle, 
H(ql + L - q - g), and any subsequent dynamical diffrac- 
tion of the electrons scattered to high angles (equation 32). 
The wave vector of the electrons scattered into the HAADF 
detector is given by q' + L where q' is in the first Brillouin 

components with reciprocal lattice vectors in the first-order 
Laue zone. This is because only plane waves with excitation 
errors close to the Ewald sphere are excited, as shown in 
Figure 2. The mathematical consequence is that these Bloch 
waves from a complete set of states and the expressions 
given in equations 34 and 35 can be considerably simplified 
due to the orthonormality relations. The final state Bloch 
wave coefficients satisfy 

zone and L is an appropriate reciprocal lattice vector for the 2 D;(~)D;(~) = a,:,. 
HAADF detector (see Fig. 3). The scattering amplitude is G 

d+(r,,qf + L! = QGL(qf,t - z)H(q' + L - q - g)Pghiq,z) x ~ m X ( q )  = SLL, 
A(q + h)exp[ix(q + h)]exp(i(q + h) . r,)dz i ' 

(33) 
and equation 35 reduces to 

The intensity in the dark field detector is given by 
exp[i(ki - kJ)t] - 1 

fir,) = JJ c;c*;,c~,~,, 
dI(r,.ql + G )  = x SSS QGL(ql,t- z)Q*c;~i~iql, f - 2 )  

L, L',G,G8 (ki - k') 
. ., g,g',h,h 
L, L 

g,g'h,lz' H ( q l + L - q - g ) H ( q l + L - q - g ' )  x A ( q + h )  
~ ( q '  + L - q -  g ) ~ * ( q '  + L'- q -  g') A(q + h7)exp[iX(q + h)lexp[-ix(q + h')l 

Psh(q,z)P*g~h-(q,z?A(q + h)A(q + h') exp[-i(h - h') . rp]d2qd2q' (37) 
x exp[ix(q + h)lexp[-i,(q + h')l 
exp[-i(h - h') - rp]d2qdz (34) Physically this means that it is not necessary to be con- 

cerned about redistribution among the Bragg beams if an 
It should be noted that the products of the dynamical integration over all final state beams is performed. The sum 

diffraction propagator matrices are in fact elements of the over scattered state reciprocal lattice vector can now be 
density matrix, which has been used previously in the replaced by an integral over the annular dark-field detec- 
theory of high-energy electron scattering by Dudarev and tor. 
Ryazonov (1988), Rez (1977), and Wright and Bird (1992). 
The Bloch wave expressions (equations 31 and 32) for the exp[i(kf - kj)t] - 1 
propagation matrices could be substituted in equation 35 Arp) = S S x SS c~c*~c*b~ch~ 

ADF S R  (ki - kk') 
and the integration over z performed explicitly to give h,hl 

His - q - g)H(s - q - g') X A(q + h) 
A(q + h7)exp[i,(q + h)]exp[-i,(q + h')] 
exp[-i(h - h') . rp]d2qd2s (38) 

exp[i(ki - ki)t] - exp[i(ki' - k")t] 
X , ., H ( q ' + L - q - g )  where the product H(s  - q - g)H(s - q - g') is given by the (ki - kJ - k' - kJ ) expression A1 1 of Appendix A for thermal diffuse scatter- 
H*(ql + L' - q - g') x A(q + h')A(q + h') ing, which was also used in equation 30. There is no re- 
exp[ix(q + h)lexp[-i~(q + h')] quirement to use the Bloch wave formalism to calculate the 
exp[-i(h - h') . r,]d2qd2q' (35) effects of dynamical diffraction. One could explicitly leave 
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the expression in terms of the matrix propagator, which 
could then be evaluated by other methods such as multislice 

pyh(q,~)P*Xdq,~)  X A(q + h)A(q + hT)e-)rp[ix-(q + h)l  
exp[-i,(q + h1)]exp[-i(h - h') . r,]d2qd2s (39) 

In a multislice calculation it is more efficient to calcu- 
late the matrices PXh(q,z) for all q values at the same time. 
This could be done by performing the calculation by using 
a supercell whose size is determined by how precisely one 
needs to sample in the Brillouin zone. For example, if a 
sampling of 8 points along the [200] direction is considered 
adequate, then a cell 16 times the [loo] direction would be 
needed. The probe could then be represented as the Fourier 
transform of equation 26 localized at a particular position 
in the supercell. The advantage of working with the Bloch 
wave formalism (or any other formalism that retains the 
reciprocal lattice summations of equations 38 and 39) is 
that the Fourier coefficients of the image intensity, which 
w7ere used by Hillyard and Silcox (1993) and by Loane et al. 
(1992) to characterize experimental images, are calculated 
explicitly. 

As can be seen by comparing equations 30 with 38 and 
39, the only effect of dynamical elastic diffraction is to in- 
terpose the matrix product P,,(q,~)P*,,~,.(q,z) between the 
coherent electron probe and the thermal diffuse scattering. 
This might lead to changes in the magnitudes of the Fourier 
coefficients of the HAADF image and alter the contrast of 
the lattice fringes. The formalism incorporating elastic scat- 
tering before the thermal-diffuse, large-angle scattering is 
essential for explaining the contrast of defects such as dis- 
locations, which were observed in the HAADF detector by 
Cowley and Huang (1992) and Perovic et al. (1993). Such 
contrast might require more than one Bloch wave, as an 
oscillating contrast is conventionally explained in terms of 
interbranch transitions (Hirsch et al., 1965). This is incon- 
sistent with the expression given by Pennycook and Jesson 
(19901, where only one s-state Bloch wave is considered. 

Equations 30 and 39, representing both the case of 
thermal diffuse scattering on its own and thermal diffuse 
scattering preceded by elastic scattering, can both be ex- 
pressed in terms of a function F(q,h,h1) which describes the 
scattering to the HAADF detector by the specimen and 
those terms which represent the incident probe. 

exp[i,(q + h)]exp[-i,(q + h']exp[-i - h') . r,]d2q 
(40) 

where 

F(q,h,h') = SS $ H(s - q - g)Ms - q - g') 
Vc 0 ADF 

when dynamical elastic scattering precedes thermal diffuse 
scattering into the HAADF detector and 

when there is only thermal diffuse scattering. It would be 
particularly convenient if the part describing the effects of 
scattering in the specimen could be represented by a local 
scattering function and the HAADF intensity given by the 
incoherent imaging expression 

Taking the Fourier transform, it can be seen that the scat- 
tering in the specimen, F(q,h,h1), must be functions 
of h - h' 

As can be seen by examining equation 30b, this is only true 
in the limit where s, the scattering vector to the high-angle 
detector, is much greater than g and h, the reciprocal lattice 
vectors in the zero-order Laue zone. The scattering vectors 
s - q - g and s - q - h are then approximately equal to s 
and equation 30b becomes 
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The error in making this assumption can be estimated by 
expanding equation 30b to first and second order in g and 
h. The fractional error, Af, ignoring q compared with s is 

The first two terms involving s - g and s . h average to 
zero for an annular detector, leaving the third (second- 
order) term, which is of order 5%, assuming that a zero- 
order Laue zone reciprocal lattice vector corresponds to 
about 10 mrad and the detector corresponds to about 100 
mrad. 

To summarize, the lattice resolution is a consequence 
of the incident semi-angle being greater than half the Bragg 
angle for the relevant lattice planes, while the contrast de- 
pends on the Fourier coefficients of the scattering as given 
in equations 38 and 39. These depend on the magnitude of 
the thermal diffuse (multiphonon) scattering, the elastic 
scattering in the crystal, and the electron optical parameters 
that determine probe size. Only calculation can determine 
the relative importance of all these effects, which will be 
explored in the next section. 

A program was written based on equation 38 in which the 
dynamical elastic diffraction is based on a Bloch wave rep- 
resentation. The program is structured as a number of 
nested loops. The outermost loops integrate over the Bril- 
louin zone. At each point, the Bloch wave coefficients and 
wave vectors are determined by diagonalisation of the com- 
plex Hamiltonian matrix. The summations over the recip- 
rocal lattice indices g,g',h,hf were then performed and the 
integration over the ADF detector, which only affected ther- 
mal diffuse scattering matrix elements (equation A1 1), was 
left as the innermost loop. The calculation time is domi- 
nated by the quadruple sum over g,g',h,hf and therefore 
scales as the fourth power of the number of ZOLZ recip- 

Figure 5. Si[llO] HAADF simulated image for 1000-A specimen 
from thermal diffuse scattering only (Equation 30) for 16.5 mrad 
objective aperture, C ,  0.8 mm, defocus 800 A, accelerating voltage 
100 kV. Bar: 1.36 A. 

rocal lattice vectors. For Si we used 13 vectors, which re- 
sulted in computation times of 11 minutes on a SGI IRIS 
workstation, and for InP we used 19 vectors, which in- 
creased the computation time to about 1 hour. The ADF 
detector was split into 5 radial and 10 angular segments for 
this integration. In all cases except where otherwise stated, 
the ADF detector accepted electrons scattered between 70 
mrads and 200 mrads. A multislice calculation would scale 
as the squre of the numbers of ZOLZ lattice vectors mul- 
tiplied by the number of thicknesses and the number of 
probe positions. 

We have used the program to calculate HAADF images 
and line profiles for the [I101 and [loo] projections of Si, 
GaAs, and InP, as these have been extensively studied ex- 
perimentally. Figure 5 shows a calculation for 1,000 A of Si 
in the [I101 projection for lOOkV electrons where only the 
thermal diffuse scattering as given by equation 30 is con- 
sidered. The objective aperture of 16.5 mrad is more than 
sufficient to accommodate the 400 reciprocal lattice vector 
and the dumbbells are clearly resolved. This image also 
shows that dynamical diffraction before thermal diffuse 
scattering is not a necessary condition for lattice resolution. 

The effects of the objective aperture size can be seen in 
Figure 6, which shows calculated images using 13 beams for 
1000 A of Si in the [I101 projection at 100 kV. The line 
profiles along the [loo] direction in the 800 A defocus 
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7 Figure 6. Si [ 1 lo] HAADF simu- 
lated images for 1000-A speci- 

L - '  men, C, 0.8 mm, accelerating 
voltage 100 kV for objective ap- 
pertures of (a) 10.6 mrad, (b) 13.7 

C mrad, and (c) 16.5 mrad. Bar: 
1.36 A. 

images are shown as Figure 7. From the line profiles, the use 
of a 10.3-mrad aperture, which only includes the 11 1 and 
220 reciprocal lattice vectors, does not resolve the dumb- 
bells. When the aperture semi-angle is increased to 13.7 
mrad, the two peaks are barely apparent but are clearly 
resolved with a 16.5 mrad aperture, which includes recip- 
rocal lattice vectors up to 400. Otherwise, the images are 
relatively insensitive to defocus. Increasing the accelerating 
voltage to 300 kV will of course result in a smaller probe size 
and improved resolution. Images for apertures of 7.5 mrad 
semi-angle, which is approximately equivalent to a 400 re- 
ciprocal lattice vector, 12.0 mrad and 19.5 mrad, are shown 
for defocus values of 400 A and 600 A in Figure 8. In all 
cases the dumbbells are clearly resolved. 

One of the strongest arguments for using HAADF im- 
aging is that the signal should show strong dependence on 
atomic number, which would make it possible to easily 

- 10.3 rnrad. Ape. - - - 13.7 rnrad. - . . -. - - - - 16.5 rnrad. 
0.035 7 ~ 7 ~ , ~ - ~ , ~ 8 ~ 7 ~ ~ 1  

0.010 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ " " ~  
0 1 2 3 4 5 6 7 8  

<001> direction (A) 

Figure 7. Line profiles along the [OOl] direction from the 800 A 
defocus images of Figure 6. 
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Figure 8. Si [I101 HAADF simulated images for 1000-A speci- 
men, C, 0.8 mm, accelerating voltage 300 kV for objective aper- 
tures of (a) 7.5 mrad (b) 12.0 mrad, and (c) 19.5 mrad. Bar: 
1.36 A. 

distinguish columns of different atoms. We therefore cal- 
culated the images of 1000 of GaAs in the [I101 projec- 
tion shown in Figure 9. The dumbbells are made up from a 
Ga and an As column, which are indistinguishable in the 
image. Line profile plots show a small contrast. If the signal 
in the HAADF detector followed Rutherford scattering, 
then the contrast would be in the ratio of z2. In Figure 10 
the AsIGa contrast is plotted for a 40 mrad and an 80 mrad 
inner cutoff as a function of outer detector angle. The signal 
does not vary much with the outer angle and the detector 
with an 80 mrad angle gives an AsIGa ratio of 1.19, which 
is close to the ratio of 1.13 expected for pure Rutherford 
scattering. 

Another compound semiconductor that has been in- 
vestigated by HAADF imaging is InP in the [ loo]  
projection. Calculations for a 100 kV microscope with an 
objective lens C, of 0.8 mm and an objective aperture 
of 13 mrads semi-angle are shown as Figure 11 for a 
number of different thicknesses. In this projection the 
In and P atoms columns alternate. The contrast at the 
P column appears to strongly depend on defocus. This 
is more clearly demonstrated in the line traces along the 

Figure 9. GaAs [I101 HAADF simulated images for 1000-A speci- 
men, C, 0.8 mm, accelerating voltage 100 kV, objective aperture 
13.7 mrad. Bar: 1.41 A. 

40 mrad. 

As:Ga contrast 
1.2 1 ' 1 ' 1 ' 1  

scattering vector S (A-') 

Figure 10. Ratio of As-to-Ga intensity as a function of detector 
outer cut-off wave vector for 40 mrad and 80 mrad inner detector 
angle. 

[I101 direction, which are shown as Figure 12. Examin- 
ing probe profiles as a function of defocus shows that a 
subsidiary maximum can build up intensity between 
the atomic columns. Care should therefore be taken in di- 
rectly interpreting the atomic column intensity as propor- 
tional to the square of atomic number in these circum- 
stances. 
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I 
I 
I 

d Figure 11. InP [loo] HAADF 
simulated images for (a) 400 8 ,  
(b) 600 A, and (c)  800 A defocus 
C, 0.8 mm, accelerating voltage 
100 kV, objective aperture 13 
mrad. Bar: 3.24 A. 

Scattering by any mechanism to a HAADF can always be 
treated as a first-order perturbation. In crystalline speci- 
mens the dominant scattering mechanism is multiphonon 
excitation, often called thermal diffuse scattering. In the 
limit of high-angle scattering, this is identical to Rutherford 
scattering from a disordered array of atoms. Single-phonon 
scattering does not give the same limiting form of the cross 
section and single-phonon calculations could give spurious 
image features. Elastic scattering to the high-order Laue 
zone ring can be shown to contribute less than 10% to the 
signal in a HAADF detector, in agreement with experimen- 
tal observation. Furthermore, elastic scattering to the HOLZ 
ring is highly concentrated in reciprocal space, and mul- 
tislice calculations that do not sample reciprocal space with 
adequate precision might give misleading estimates of the 
proportion of elastically scattered electrons collected by the 
HAADF detector. Inelastic scattering from large energy loss 

Df = 400 A I 
-+-Df=600At Thickness = 1 10 A ....+..- I -  Df = 800 A I 

0.0 I I I I 
0  4 8 12  

<110> direction ( A ) 
Figure 12. Line profiles along the [110] direction from the simu- 
lated images of the 110-A InP specimen shown in Figure 11. 
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valence or inner shell excitations could also make a signifi- 
cant contribution to the HAADF signal for light elements. 

The lattice resolution in HAADF images arises because 
they are formed with a coherent probe that subtends an 
angle greater than the Bragg angle for the lattice planes in 
the image. This is in accordance with the views of Spence 
and Cowley (1978). The contrast is due to the multiphonon 
thermal diffuse scattering which gives an approximate z2 
dependence. The contrast mechanism can therefore be de- 
scribed as incoherent. The theory shows that it is not nec- 
essary for there to be dynamical elastic scattering before the 
thermal diffuse scattering to achieve localization on strings 
of atoms and hence, atomic resolution. In fact, experimen- 
tal images of dislocations show that there must be more 
than one Bloch wave present and that the probe does not 
select only a single s state (Cowley and Huang, 1991). It has 
also been shown that dynamical elastic diffraction for elec- 
trons scattered into the HAADF detector has no effect, as it 
only redistributes intensity in the detector. 

The theory provides an efficient way to calculate 
HAADF image contrast. Another advantage of the theory is 
that it should be possible to simulate defect contrast by 
substituting the appropriate dynamical diffraction propaga- 
tor matrix P&(q,z). Calculations for semiconductors in the 
[I101 and [OOl] projections show that the contrast is rela- 
tively insensitive to thickness. The resolution, as expected, is 
related to the size of the coherently filled objective aperture. 
There are cases when the tails of the probe function could 
give spurious image intensities that might lead to errors in 
measurement of apparent Z for a column. It is also unfor- 
tunate that the multiphonon scattering can only be approxi- 
mately described by an incoherent imaging model which 
assumes a simple local potential, analogous to an absorp- 
tion potential. For quantitative analysis of HAADF images, 
it is necessary to calculate intensities using equations 38 
or 39. 

Imaging at high resolution using the HAADF signal is 
a promising method for detecting substitutions by one or 
two atoms in a single atomic column. The quantitative lat- 
tice imaging method of Ourmazd et al. (1990) also has this 
capability. It would therefore be interesting to compare the 
two methods in terms of their sensitivity at a given speci- 
men dose. 
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In this appendix, the matrix element products for mul- 
tiphonon (thermal diffuse) scattering used in the Imaging 
with Electrons Scattered to High Angles section, and the 
cross sections used in the High Angle Scattering section, are 
derived following the theory of Hall and Hirsch (Hall and 
Hirsch, 1965). For simplicity, we show the derivation for a 
unit cell with only one type of atom. 

We start by assuming that the wave function for the 
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elastically scattered electrons at a depth z in a crystal can be the Debye Waller factor. Using equation A5 in equation A4 
expanded as a set of plane waves gives 

= x bg(z)exp(ig. r)  (A1 Is(s) = x +;(z)fl(s - g) N + 
g g [ xx exp(i(s - g) . (ri - e x p ( - ~ ( s  - g)') 

where g is a reciprocal lattice vector. The amplitude of i j t i  

single scattering into a direction defined by s is then + x $ $ g ( ~ ) + h ( z ) ~ l ( s  - ~)LI(s  - h) 
I 

g h+g 

( )  = g f e  - ( - g) ; I  (A21 
g i + 77 exp(i(s - g) . ri + i(s - h) . r,) 

i i# i  

where rVi are the instantaneous atomic positions and f,,(s) exp(-M(s - g)2)exp(-~(s - h)2) I (A6) 
are electron scattering fcctors. The intensity scattered to s is 
then 

To determine the thermal diffuse contribution, the elastic 

S(s) = C x +:(z)fl(s - g)exp(i(s - g) . (r'i - r))) scattering, I,(s), from the static atom positions ri must be 
g i j  subtracted. 

+ CCXX +g(z)+h(z)Ll(s - g)L1(s - h) 
g h#g i j 

exp(is . (rfi - r)) - ig . rTi + ih - r;) (A3) I,(s) = x+;(z)fl(s - g) exp(-M(s - g)') 
g 

The instantaneous position r'; can be written as the sum of 
the static atom position ri and a displacement ui which + 22 +g(~)+h(~)fel(s - ~)LI(s  - h )  
could arise from thermal excitation. Explicitly separating g h+g 

terms referring to different atom positions gives exp(-M(s - g)2)exp(-~(s - h)2) 
x [ xexp(-i(g - h) ri) 

[ 
L i 

A(.) = x O:(z)fl(s - g) N + 
g 

+ 77 exp(i(s - g) . ri + i(s - h) . rj)] (A7) 

1 i j# i  
exp(i(s - g) . (ri - rj)) exp(i(s - g) (ui - uj)) 

i i f i  
The final expression for the thermal diffuse intensity 

+ 2 x +,(z)+h(z)f,ris - g)f,r(~ - h) 

[exp(-M(g - h)2) - exp(-M(s - g)2) 
where the bar denotes time averaging and N is the number exp(-M(s - h)2)] (Ag) 

of atoms in the crystal. Time averaging gives the following 
relation for independently vibrating atoms where NCel1 is the number of unit cells in the crystal and the 

summation over atomic positions is restricted to the unit 
cell. The first term can be identified with thermal diffuse or exp[is . (ui - uj)] = exp = exp(-MS~) (A51 
multiphonon scattering by a vector s - g from a plane wave, 
while the second term results from the interference between 

where ii2 is the mean square atomic displacement and M is two plane wave components identified by the reciprocal 
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lattice vectors g and h. To derive equation 18, which is a dITDs(s) -- - H(s - g)H*(s - h) = thermal diffuse scattering cross section per atom, the Mott dz 
formula equation 1, should be used for the electron scat- 
tering factor f,,(s) and equation A8 divided by N. 

4 ( z  - f,(~))* [ l  - exp(-Ms2)]ds (A9) dI,,s(s) = 
a&" 

exp[-M(s - h)2]{exp[(s - g)C(AR,,)(s - h)] - 1) (A12) 

The second term is used in the expression for thermal dif- where hRii = ri - ri is the atomic separation and C(ARli) is 
fuse scattering from convergent beam probes and is best the correlation function which, for simple systems with one 
expressed as an increase in scattered intensity per specimen type of atom, is given by 
depth per unit area. It appears in the Imaging with Elec- 
trons Scattered to High Angles section as a product of ma- fi vc dk 

C(AR,) = ,- ePeP S - ( exp(ik . AR,j) 
trix elements. Again, the Mott formula for the electron scat- ( 2 ~ )  Ma , wp(k) 
tering factor is substituted in A8 to give 2cos(ik . ARJ + exp(f5fiw) - 1 (A131 

~ I T D S ( ~ )  -- - H(s - g)H*(s - h) = where Ma is the atomic mass, f5 is llk,T, T is the tempera- 
dz ture, and ep refers to the phonon polarization. In the Ein- 

stein model C(AR,) is u26,,, and A12 reduces to A10. If an 
4 [Z -fXb - g)l[Z -fXb - h)l isotropic Debye model is used for phonon dispersion then 
- C expi-i(g - h) . r,) 

(S - g)2(s - h)' equation A12 can be approximately integrated, giving a sinc a : ~ ,  , 
function in atomic separation (Jesson and Pennycook, 

X {exp[-M(g - h)2] - exp[-M(s - g)2]exp[-~(s - h)2]) 
1995). Even under these circumstances, "coherence" is 
maintained only over about 3-7 interatomic spacings. 

which is similar to the expression for multiphonon scatter- 
ing derived by Radi for anomalous absorption due to pho- 
non scattering (Radi, 1970). This can be easily general- 
ized to 

Contribution of Inelastic Scattering to the 
HAADF Detector 
Although it is generally believed that inelastic scattering is 
strongly forward peaked and has little chance of reaching a 
high-angle detector, a small but significant fraction of in- 
elastically scattered electrons can be scattered through large 
angles in the form of Compton scattering. The general ex- 
pression for the differential scattering cross section for in- 
elastic scattering is 

where Zi is the atomic number, is the X-ray scattering where q is the scattering wave vector and +i and +f are the 
factor, and Mi is the Debye-Waller factor for atom of type initial and final state wave functions, respectively, and ni is 
i, when there is more than one type of atom in the unit cell. the number of electrons in atomic subshell i. At high 

To derive the equivalent expression for a general pho- enough energies above an edge threshold, the electron in 
non dispersion, the Glauber correlation function should be the final state is little influenced by the potential of the solid 
used (Glauber, 1955). Equation A10 now becomes and can be expressed as a plane wave, wave vector kf 
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d21 4ni  I(exp( - i b .  r)lexp(iq . r)$,)I2 signal from Ei to Ef is equivalent to integrating the signal 
d E d a  - ,; q4 

(B2) between qi and qf The integral cross section becomes 

The initial state wave function Ci is slowly varying, com- 
pared with the rapid oscillations of the final state plane wave 
and, to a first approximation, can be assumed constant. 
Performing the integral for the matrix element gives 
8(kf - q). When the energy transfer is large, the binding 
energy of the atomic electron is insignificant and the excited 
electron behaves as if it was a free electron with energy 
E = ~'i~~'12nz. At an energy E above the threshold for that 
subshell, the spectrum only has electrons scattered by a 
wave vector q = ~KE/&.  This sharp feature is known as the 
Bethe ridge and gets narrower with increasing energy above 
threshold. The differential cross section becomes 

Only electrons with energy from El = hzq2/2m to 
Ef= h2q;/2m will contribute to the signal observed by the 
HAADF detector where qi and qf define the inner and 
outer cutoff wave vectors for the detector. Integrating the 

where K is the fast electron wave vector. 
This can be compared to an approximate value for the 

integrated Rutherford scattering with the same limits. 

The sum over subshells is approximately given by the 
atomic number Z = f n,, assuming that the contribution 
from subshells whose binding energy is a sizable fraction of 
the beam electron energy is relatively small. Comparing 
equations B4 and B5 shows that the ratio of elastic to in- 
elastic scattering in the HAADF detector is Z, the atomic 
number. For first-row light elements some estimate of the 
inelastic contribution to the detector should be included if 
better than 10% accuracy is desired in the calculation. 
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